It is of great significance for cleaner production to substitute bio-energy for fossil fuels in iron ore sintering. However, with the replacement ratio increasing, the consistency of heat front and flame front is brok...It is of great significance for cleaner production to substitute bio-energy for fossil fuels in iron ore sintering. However, with the replacement ratio increasing, the consistency of heat front and flame front is broken, and the thermal utilizing efficiency of fuel is reduced, which results in the decrease of yield and tumble index of sinter. Circulating flue gas to sintering bed as biochar replacing 40% coke, CO in flue gas can be reused so as to increase the thermal utilizing efficiency of fuels, and the consistency of two fronts is recovered for the circulating flue gas containing certain CO2, H2 O and lower O2, which contributes to increasing the maximum temperature, extending the high temperature duration time of sintering bed, and results in improving the output and quality of sinter. In the condition of circulating 40% flue gas, the sintering with biomass fuels is strengthened, and the sintering indexes with biomass fuel replacing 40% coke breeze are comparative to those of using coke breeze completely.展开更多
Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-c...Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-coated titanium alloy implant suffered at the interface of the HAP coatings and titanium alloy substrate will be a potential weakness in prosthesis. Yttria-stablized zirconia (YSZ) is expected to enhance the mechanical properties of the HAP coating and reduce the coefficient of thermal expansion difference between the coated layer and the substrate. These may reinforce the bonding strength between the coatings and the substrate. In this paper, HAP/YSZ composite coatings were cladded by laser. The effects of zirconia on the microstructure, mechanical properties and formation of tricalcium phosphate (TCP, Ca 3(PO 4) 2) of the HAP/YSZ composite coatings were evaluated. XRD, SEM and TEM were used to investigate the phase composition, microstructure and morphology of the coatings. The experimental results showed that adding YSZ in coatings was favorable to the composition and stability of HAP, and to the improvement of the adhesion strength, microhardness and microtoughness. A well uniform, crack-free coating of HAP/YSZ composites was formed on Ti-alloy substrate by laser cladding.展开更多
Objectives To investigate the effects of epoxy chloropropan on the expression of matrix metalloproteinases-9 (MMP-9)in creating tissue engineered heart valves(TEHV),on the tissue structures of TEHV,and to study th...Objectives To investigate the effects of epoxy chloropropan on the expression of matrix metalloproteinases-9 (MMP-9)in creating tissue engineered heart valves(TEHV),on the tissue structures of TEHV,and to study the effects of epoxy chloropropan on the calcification of TEHV.Methods The porcine aortic valve leaflets were digested and decellularized by using detergent and trypsin.Those treated with 0.3% glutaraldehyde for 48 hours were the control group;those treated with 3% epoxy choloropropan for 24 hours were the experimental group.The cultured human bone marrow mesenchymal stem cells(hBMSCs)were seeded onto the decellularized scaffolds of TEHV.The histological studies were done with pathological sections and scanning electron microscopy and reverse transcriptase-polymerase chain reaction(RT-PCR)were used to detect the expression of MMP-9.Results In the experimental group.the histology showed that the BMSCs grew well into the pores and formed a confluent layer in decellularized scaffolds;RT-PCR indicated significantly attenuated expressions of MMP-9,compared with the control(P〈0.05).Conclusion The decellularized porcine aortic valves treated with 3% epoxy chloropropan may inhibit the expression of MMP-9;therefore epoxy chloropropan may prevent the calcification of tissue engineered heart valves.展开更多
Fossil fuels are non-renewable, and their quantities have been reducing because of pumping. On the other hand, the traffic is still developing and needs for fuels are growing. As a consequence people are forced to loo...Fossil fuels are non-renewable, and their quantities have been reducing because of pumping. On the other hand, the traffic is still developing and needs for fuels are growing. As a consequence people are forced to look for other sources of getting fuel. Additional reason for this has been steadily boosting the prices of crude oil and gas. Diesel, as fuel that is often used, is possible to produce from different feedstock (oil rape, soybean, sunflower, palm, waste animal fats, algae, etc). In this paper, the author analyzes the possibility of obtaining biodiesel from algae and the feasibility of such a method of producing biodiesel. Algae for biodiesel production are analyzed and the systems in which they are growing are described. Experience in this area is described as well as opportunities for further development of technology for getting biodiesel from algae. Algae are very resistant and can grow virtually anywhere in the desert, in salt and fresh water and even in the waste water. Algae can reproduce quickly; they use C02 for photosynthesis and less water than other crops. Bio fuel from algae is biodegradable and contains no sulphur and it is not toxic.展开更多
Synthetic dyes are commonly used for graphite depression in poly-metallic flotation circuits; however,these dyes can be very expensive. The aim of this study is to evaluate performance of certain low-cost alternative ...Synthetic dyes are commonly used for graphite depression in poly-metallic flotation circuits; however,these dyes can be very expensive. The aim of this study is to evaluate performance of certain low-cost alternative depressants for a complex lead-zinc(Pb-Zn) ore rich in graphite(Gr-C) on a conventional mini pilot-scale flotation circuit. The reagents used were commercial and industrial grade starch; agro-based waste-sugarcane bagasse and charred(burnt) bagasse powder. The primary evaluation criteria were quality(grades) of lead and zinc concentrates, their recoveries(%), and graphite rejection(%) in the tails.Benchmark tests using nigrosine as graphite depressant showed 94.3% rejection of Gr-C. The results with commercial starch were found as effective with 93.8% graphite rejection. Furthermore, bagasse powder showed potential in improving product quality(36.4% and 65.6% Pb grade and recovery) with an intermediate effectiveness in graphite rejection(85.6%). The order of effectiveness in Gr-C rejection follows nigrosine % commercial starch > bagasse > industrial starch > charred bagasse. In addition, the effect these depressants on silver(byproduct) grade and recovery was also investigated.展开更多
The technology of anaerobic digestion of sewage and solid wastes regains people's attention, mainly due to high price of fossil fuel nowadays in most recent years. The main topic for batch test is to study the inhibi...The technology of anaerobic digestion of sewage and solid wastes regains people's attention, mainly due to high price of fossil fuel nowadays in most recent years. The main topic for batch test is to study the inhibitory effect and boundary conditions of organic acid (propionic acid) to anaerobic digesters. High concentrations ofpropionic acid are achieved by direct dosage of the acid. As it is thought to be highly inhibitory to the digester, we are expecting that: (1) the production rate of methane declines and finally stops when the acid gradually accumulates; (2) the propionic acid will displace stronger inhibition under lower pH values. The results of the batch tests will assist engineers to better control anaerobic digesters and react to potential digester crises caused by propionic acid before it is too late.展开更多
Generation of electrical energy from imported fossil fuels is subject to the price fluctuations of the global marketplace and, thus, constitutes a major expense in its distribution to the end users. Even with the curr...Generation of electrical energy from imported fossil fuels is subject to the price fluctuations of the global marketplace and, thus, constitutes a major expense in its distribution to the end users. Even with the current low prices of fuel, residents and businesses in the United States pay a significant price for their utilities, if not higher than most other countries in the world. Emissions from the evaporation and combustion of these traditional fossil fuels contribute to a range of environmental and health problems, causing poor air quality, and emitting greenhouse gases that contribute to global warming. Alternative fuel created from domestic sources has been proposed as a solution to these problems and much alternative energy are being developed based on solar, wind, biomass, hydropower, fuel cell, geothermal, etc. A new alternative hydrocarbon fuel which is produced from waste plastics can be used with compatble power plants and generators appliances to produce electricity that can be supplied into homes, businesses, power grids and other sectors.展开更多
The enhancement of the physicochemical characteristics of fossil fuel has been the subject of extensive research to achieve better efficiency and reduced emissions. Diesel is one of the fossil fuels that are highly co...The enhancement of the physicochemical characteristics of fossil fuel has been the subject of extensive research to achieve better efficiency and reduced emissions. Diesel is one of the fossil fuels that are highly consumed in daily life. This paper focuses on the behavior of a refined diesel fuel when copper oxide nanoparticles are added. The resulting blend ofnano-diesel has been analyzed using a four-stroke engine under two loads indicating light vehicles and heavy duty vehicles. The nano-diesel was prepared by the aid of an ultrasonicator and a mechanical homogenizer. A base diesel was taken as a reference to distinguish the effect of the nanoparticles additives. Three different samples with different concentrations are utilized in this study. As a result, the fuel consumption, exhaust temperature, brake power, power losses and engine efficiency have been evaluated and compared to the base diesel in order to demonstrate and access the enhanced performance of the nano-fuel blend. The three concentrations conducted were 100 ppm, 200 ppm and 300 ppm of copper oxide nanoparticles. The results represented that the pure refinery diesel has low exhaust temperatures, high brake power and high efficiency as compared to the commercial diesel supplied from a gas station. In addition, 300 ppm copper oxide nano-diesel showed improvement in engine performances as compared to the other concentrations and pure diesel. In this context, lowest fuel consumption for both passenger cars and heavy duty vehicles was achieved, brake power for passenger cars only was improved and input power showed improvement however, exhaust temperature was the highest as for this fuel.展开更多
A simple one step solvothermal strategy using non-toxic and cost-effective precursors has been developed to prepare magnetite/reduced graphene oxide (MRGO) nanocomposites for removal of dye pollutants. Taking advant...A simple one step solvothermal strategy using non-toxic and cost-effective precursors has been developed to prepare magnetite/reduced graphene oxide (MRGO) nanocomposites for removal of dye pollutants. Taking advantage of the combined benefits of graphene and magnetic nanoparticles, these MRGO nanocomposites exhibit excellent removal efficiency (over 91% for rhodamine B and over 94% for malachite green) and rapid separation from aqueous solution by an external magnetic field. Interestingly, the performance of the MRGO composites is strongly dependent on both the loading of Fe304 and the pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Freundlich isotherm and the pseudo-second-order kinetic model. In further applications, real samples--including industrial waste water and lake water--have been treated using the MRGO composites. All the results demonstrate that the MRGO composites are effective adsorbents for removal of dye pollutants and thus could provide a new platform for dye decontamination.展开更多
We have demonstrated a one-step and effective electrochemical method to synthesize graphene/MnO2 nanowall hybrids (GMHs). Graphene oxide (GO) was electrochemically reduced to graphene (GN), accompanied by the si...We have demonstrated a one-step and effective electrochemical method to synthesize graphene/MnO2 nanowall hybrids (GMHs). Graphene oxide (GO) was electrochemically reduced to graphene (GN), accompanied by the simultaneous formation of MnO2 with a nanowall morphology via cathodic electrochemical deposition. The morphology and structure of the GMHs were systematically characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The resulting GMHs combine the advantages of GN and the nanowall array morphology of MnO2 in providing a conductive network of amorphous nanocomposite, which shows good electrochemical capacitive behavior. This simple approach should find practical applications in the large-scale production of GMHs.展开更多
Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. Thi...Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. This review summarizes recent development of catalysts used for fuel cells over the past 15 years. It is focused on polymer electrolyte membrane fuel cells as an environmentally benign and feasible energy source. Graphene is used as a promising support material for Pt catalysts. It ensures high catalyst loading, good electro- catalysis and stability. Attention has been drawn to structural sensitivity of the catalysts, as well as polymetallic and nanos- tructured catalysts in order to improve the oxygen reduction reaction. Characterization methods including electrochemical, microscopic and spectroscopic techniques are summarized with an overview of the latest technological advances in the field. Future perspective is given in a form of Pt-free catalysts, such as microbial fuel cells for long-term development.展开更多
A novel hydrogen peroxide biosensor based on the BPT/AuNPs/graphene/HRP composite was developed. Firstly, graphene was prepared under the protection of polyvinylpyrrolidone (PVP), and then the AuNPs/graphene composite...A novel hydrogen peroxide biosensor based on the BPT/AuNPs/graphene/HRP composite was developed. Firstly, graphene was prepared under the protection of polyvinylpyrrolidone (PVP), and then the AuNPs/graphene composite was synthesized via in situ decoration. Using biphenyldimethanethiol (BPT) as a connector, the AuNPs/graphene composite was immobilized on the surface of the Au electrode, and whereafter the horseradish peroxidase (HRP) was decorated on the surface of the composite by adsorption. The morphology and structure of the products were characterized by XRD, SEM, TEM and UV-visible spectroscopy. The electrocatalytic performance of the resulting BPT/AuNPs/grapheme/HRP composite (namely, biosensor) was studied by electrochemical instrument. The results show that the biosensor has high sensitivity and fast response to H2O2. In the solution of pH 7.4 with potential -0.2V, the linear response of the biosensor to H2O2 ranges from 5.0×10-6 to 2.5×10-3M with the detection limit of 1.5×10-6M.展开更多
基金Projects(51174253,51304245) supported by National Natural Science Foundation of China
文摘It is of great significance for cleaner production to substitute bio-energy for fossil fuels in iron ore sintering. However, with the replacement ratio increasing, the consistency of heat front and flame front is broken, and the thermal utilizing efficiency of fuel is reduced, which results in the decrease of yield and tumble index of sinter. Circulating flue gas to sintering bed as biochar replacing 40% coke, CO in flue gas can be reused so as to increase the thermal utilizing efficiency of fuels, and the consistency of two fronts is recovered for the circulating flue gas containing certain CO2, H2 O and lower O2, which contributes to increasing the maximum temperature, extending the high temperature duration time of sintering bed, and results in improving the output and quality of sinter. In the condition of circulating 40% flue gas, the sintering with biomass fuels is strengthened, and the sintering indexes with biomass fuel replacing 40% coke breeze are comparative to those of using coke breeze completely.
文摘Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-coated titanium alloy implant suffered at the interface of the HAP coatings and titanium alloy substrate will be a potential weakness in prosthesis. Yttria-stablized zirconia (YSZ) is expected to enhance the mechanical properties of the HAP coating and reduce the coefficient of thermal expansion difference between the coated layer and the substrate. These may reinforce the bonding strength between the coatings and the substrate. In this paper, HAP/YSZ composite coatings were cladded by laser. The effects of zirconia on the microstructure, mechanical properties and formation of tricalcium phosphate (TCP, Ca 3(PO 4) 2) of the HAP/YSZ composite coatings were evaluated. XRD, SEM and TEM were used to investigate the phase composition, microstructure and morphology of the coatings. The experimental results showed that adding YSZ in coatings was favorable to the composition and stability of HAP, and to the improvement of the adhesion strength, microhardness and microtoughness. A well uniform, crack-free coating of HAP/YSZ composites was formed on Ti-alloy substrate by laser cladding.
文摘Objectives To investigate the effects of epoxy chloropropan on the expression of matrix metalloproteinases-9 (MMP-9)in creating tissue engineered heart valves(TEHV),on the tissue structures of TEHV,and to study the effects of epoxy chloropropan on the calcification of TEHV.Methods The porcine aortic valve leaflets were digested and decellularized by using detergent and trypsin.Those treated with 0.3% glutaraldehyde for 48 hours were the control group;those treated with 3% epoxy choloropropan for 24 hours were the experimental group.The cultured human bone marrow mesenchymal stem cells(hBMSCs)were seeded onto the decellularized scaffolds of TEHV.The histological studies were done with pathological sections and scanning electron microscopy and reverse transcriptase-polymerase chain reaction(RT-PCR)were used to detect the expression of MMP-9.Results In the experimental group.the histology showed that the BMSCs grew well into the pores and formed a confluent layer in decellularized scaffolds;RT-PCR indicated significantly attenuated expressions of MMP-9,compared with the control(P〈0.05).Conclusion The decellularized porcine aortic valves treated with 3% epoxy chloropropan may inhibit the expression of MMP-9;therefore epoxy chloropropan may prevent the calcification of tissue engineered heart valves.
文摘Fossil fuels are non-renewable, and their quantities have been reducing because of pumping. On the other hand, the traffic is still developing and needs for fuels are growing. As a consequence people are forced to look for other sources of getting fuel. Additional reason for this has been steadily boosting the prices of crude oil and gas. Diesel, as fuel that is often used, is possible to produce from different feedstock (oil rape, soybean, sunflower, palm, waste animal fats, algae, etc). In this paper, the author analyzes the possibility of obtaining biodiesel from algae and the feasibility of such a method of producing biodiesel. Algae for biodiesel production are analyzed and the systems in which they are growing are described. Experience in this area is described as well as opportunities for further development of technology for getting biodiesel from algae. Algae are very resistant and can grow virtually anywhere in the desert, in salt and fresh water and even in the waste water. Algae can reproduce quickly; they use C02 for photosynthesis and less water than other crops. Bio fuel from algae is biodegradable and contains no sulphur and it is not toxic.
基金The author is grateful to the management and staff of Center Research Development laboratory(HZL,Debari),India for their support with this research and permitting to publish the work.
文摘Synthetic dyes are commonly used for graphite depression in poly-metallic flotation circuits; however,these dyes can be very expensive. The aim of this study is to evaluate performance of certain low-cost alternative depressants for a complex lead-zinc(Pb-Zn) ore rich in graphite(Gr-C) on a conventional mini pilot-scale flotation circuit. The reagents used were commercial and industrial grade starch; agro-based waste-sugarcane bagasse and charred(burnt) bagasse powder. The primary evaluation criteria were quality(grades) of lead and zinc concentrates, their recoveries(%), and graphite rejection(%) in the tails.Benchmark tests using nigrosine as graphite depressant showed 94.3% rejection of Gr-C. The results with commercial starch were found as effective with 93.8% graphite rejection. Furthermore, bagasse powder showed potential in improving product quality(36.4% and 65.6% Pb grade and recovery) with an intermediate effectiveness in graphite rejection(85.6%). The order of effectiveness in Gr-C rejection follows nigrosine % commercial starch > bagasse > industrial starch > charred bagasse. In addition, the effect these depressants on silver(byproduct) grade and recovery was also investigated.
文摘The technology of anaerobic digestion of sewage and solid wastes regains people's attention, mainly due to high price of fossil fuel nowadays in most recent years. The main topic for batch test is to study the inhibitory effect and boundary conditions of organic acid (propionic acid) to anaerobic digesters. High concentrations ofpropionic acid are achieved by direct dosage of the acid. As it is thought to be highly inhibitory to the digester, we are expecting that: (1) the production rate of methane declines and finally stops when the acid gradually accumulates; (2) the propionic acid will displace stronger inhibition under lower pH values. The results of the batch tests will assist engineers to better control anaerobic digesters and react to potential digester crises caused by propionic acid before it is too late.
文摘Generation of electrical energy from imported fossil fuels is subject to the price fluctuations of the global marketplace and, thus, constitutes a major expense in its distribution to the end users. Even with the current low prices of fuel, residents and businesses in the United States pay a significant price for their utilities, if not higher than most other countries in the world. Emissions from the evaporation and combustion of these traditional fossil fuels contribute to a range of environmental and health problems, causing poor air quality, and emitting greenhouse gases that contribute to global warming. Alternative fuel created from domestic sources has been proposed as a solution to these problems and much alternative energy are being developed based on solar, wind, biomass, hydropower, fuel cell, geothermal, etc. A new alternative hydrocarbon fuel which is produced from waste plastics can be used with compatble power plants and generators appliances to produce electricity that can be supplied into homes, businesses, power grids and other sectors.
文摘The enhancement of the physicochemical characteristics of fossil fuel has been the subject of extensive research to achieve better efficiency and reduced emissions. Diesel is one of the fossil fuels that are highly consumed in daily life. This paper focuses on the behavior of a refined diesel fuel when copper oxide nanoparticles are added. The resulting blend ofnano-diesel has been analyzed using a four-stroke engine under two loads indicating light vehicles and heavy duty vehicles. The nano-diesel was prepared by the aid of an ultrasonicator and a mechanical homogenizer. A base diesel was taken as a reference to distinguish the effect of the nanoparticles additives. Three different samples with different concentrations are utilized in this study. As a result, the fuel consumption, exhaust temperature, brake power, power losses and engine efficiency have been evaluated and compared to the base diesel in order to demonstrate and access the enhanced performance of the nano-fuel blend. The three concentrations conducted were 100 ppm, 200 ppm and 300 ppm of copper oxide nanoparticles. The results represented that the pure refinery diesel has low exhaust temperatures, high brake power and high efficiency as compared to the commercial diesel supplied from a gas station. In addition, 300 ppm copper oxide nano-diesel showed improvement in engine performances as compared to the other concentrations and pure diesel. In this context, lowest fuel consumption for both passenger cars and heavy duty vehicles was achieved, brake power for passenger cars only was improved and input power showed improvement however, exhaust temperature was the highest as for this fuel.
文摘A simple one step solvothermal strategy using non-toxic and cost-effective precursors has been developed to prepare magnetite/reduced graphene oxide (MRGO) nanocomposites for removal of dye pollutants. Taking advantage of the combined benefits of graphene and magnetic nanoparticles, these MRGO nanocomposites exhibit excellent removal efficiency (over 91% for rhodamine B and over 94% for malachite green) and rapid separation from aqueous solution by an external magnetic field. Interestingly, the performance of the MRGO composites is strongly dependent on both the loading of Fe304 and the pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Freundlich isotherm and the pseudo-second-order kinetic model. In further applications, real samples--including industrial waste water and lake water--have been treated using the MRGO composites. All the results demonstrate that the MRGO composites are effective adsorbents for removal of dye pollutants and thus could provide a new platform for dye decontamination.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Nos. 20935003 and 20820102037) and the 973 Project (No. 2010CB933603).
文摘We have demonstrated a one-step and effective electrochemical method to synthesize graphene/MnO2 nanowall hybrids (GMHs). Graphene oxide (GO) was electrochemically reduced to graphene (GN), accompanied by the simultaneous formation of MnO2 with a nanowall morphology via cathodic electrochemical deposition. The morphology and structure of the GMHs were systematically characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The resulting GMHs combine the advantages of GN and the nanowall array morphology of MnO2 in providing a conductive network of amorphous nanocomposite, which shows good electrochemical capacitive behavior. This simple approach should find practical applications in the large-scale production of GMHs.
基金supported by the Danish Council for Independent Research|Technology and Production Sciences(DFF-1335-00330)
文摘Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. This review summarizes recent development of catalysts used for fuel cells over the past 15 years. It is focused on polymer electrolyte membrane fuel cells as an environmentally benign and feasible energy source. Graphene is used as a promising support material for Pt catalysts. It ensures high catalyst loading, good electro- catalysis and stability. Attention has been drawn to structural sensitivity of the catalysts, as well as polymetallic and nanos- tructured catalysts in order to improve the oxygen reduction reaction. Characterization methods including electrochemical, microscopic and spectroscopic techniques are summarized with an overview of the latest technological advances in the field. Future perspective is given in a form of Pt-free catalysts, such as microbial fuel cells for long-term development.
基金supported by the National Natural Science Foundation of China (20875001, 20775001, 20771001, 21071002 & 20905001)the Innovation Team Fund of Anhui Province (2006KJ007TD & KJ2010A030)
文摘A novel hydrogen peroxide biosensor based on the BPT/AuNPs/graphene/HRP composite was developed. Firstly, graphene was prepared under the protection of polyvinylpyrrolidone (PVP), and then the AuNPs/graphene composite was synthesized via in situ decoration. Using biphenyldimethanethiol (BPT) as a connector, the AuNPs/graphene composite was immobilized on the surface of the Au electrode, and whereafter the horseradish peroxidase (HRP) was decorated on the surface of the composite by adsorption. The morphology and structure of the products were characterized by XRD, SEM, TEM and UV-visible spectroscopy. The electrocatalytic performance of the resulting BPT/AuNPs/grapheme/HRP composite (namely, biosensor) was studied by electrochemical instrument. The results show that the biosensor has high sensitivity and fast response to H2O2. In the solution of pH 7.4 with potential -0.2V, the linear response of the biosensor to H2O2 ranges from 5.0×10-6 to 2.5×10-3M with the detection limit of 1.5×10-6M.