To perform the mechanism study of special association for vancomycin and D-Ala-D-Ala-containing peptides on the interface of solution and self-assemble monolayer, the binding between vancomycin and pentapeptide (Lys-...To perform the mechanism study of special association for vancomycin and D-Ala-D-Ala-containing peptides on the interface of solution and self-assemble monolayer, the binding between vancomycin and pentapeptide (Lys-Lys-Gly-D-Ala-D-Ala) was investigated by flow injection surface plasmon resonance (FI-SPR) and flow injection quartz crystal microbalance (FI-QCM). To facilitate the formation of a compact vancomycin adsorbates layer with a uniform surface orientation, vancomycin molecules were attached onto a preformed alkanethiol self-assembled monolayer. By optimizing the conditions for the binding between Lys-Lys-Gly-D-Ala-D-Ala and vancomycin on the assembled chip, the detecting limit of Lys-Lys-Gly-D-Ala-D-Ala was greatly improved (reaching 0.5 ×10^- 6 mol/L or 7.5 × 10^-12 mol). The equilibrium constant of the association of Lys-Lys-Gly-D-Ala-D-Ala with vancomycin was also obtained (KAds=5.0×10^4 L/tool).展开更多
In this work, under pressure 5.4 GPa and temperature 1250-1400°C, large gem-diamond single crystals with perfect shape and different content of additive boron were synthesized using temperature gradient method. H...In this work, under pressure 5.4 GPa and temperature 1250-1400°C, large gem-diamond single crystals with perfect shape and different content of additive boron were synthesized using temperature gradient method. High-purity boron powders were added as boron source into the graphite powder, and the effects of additive boron on crystal growth habit were investigated in detail. The relationship between the growth rate and the amount of additive boron was studied. The scanning electron microscopy was employed to study the morphology of boron-doped diamond crystals. Raman spectroscopy and Hall measurements were used to investigate the crystal structures and the carrier concentration, respectively. The results show that with the increase of the content of boron added into graphite powder, the crystal growth rate and the carrier concentration increase firstly, and decrease afterwards, and the zone-center phonon line at 1332 cm 1 has small shift to lower energy. The defects occur on the crystal surface when excessive boron is added in the synthesis system.展开更多
Hierarchically porous single-crystalline nanosized zeolites as heterogeneous catalysts show great poten- tial in fine chemistry because they offer more rich hierarchically porous channels for the mass transfer and mol...Hierarchically porous single-crystalline nanosized zeolites as heterogeneous catalysts show great poten- tial in fine chemistry because they offer more rich hierarchically porous channels for the mass transfer and molecular diffusion. However, the synthesis of hierarchically porous nanosized zeolites generally requires the assistance of templates acting as the mesoporogens, which limits its popularity. Herein, we report a one-pot and template-free synthesis of hierarchically porous single-crystalline nanosized zeolite beta only by introducing sodium carbonate in precursor solution. The resulted sample features the extraordinary properties, including the uniform nanocrystal (200-300 nm), high pore volume (0.65 cm3g 1) and the hierarchical pore-size distribution (e.g., 2-8 and 90-150 nm). After slicing pro- cessing, it is interestingly found that a large number of interconnected mesopores penetrate throughout whole material, which enables the hierarchically porous nanosized zeolite beta remarkably superior cat- alytic activity than the conventional zeolite beta in condensation of henzaldehyde with ethanol at room temperature. More importantly, this one-pot sodium carbonate-assisted synthetic strategy is highly ver- satile, which has also been successfully developed to synthesize hierarchically porous nanosized single- crystalline zeolites ZSM-5 and TS.展开更多
基金Projects(20773165,20876179) supported by the National Natural Science Foundation of ChinaProject(09JJ1002) supported by the Hunan Provincial Natural Science Foundation,China+1 种基金Project(NCET-07-0865) for New Century Excellent Talents in Chinese UniversityProject(2007AA022006) supported by the National High Technology Research and Development Program of China
文摘To perform the mechanism study of special association for vancomycin and D-Ala-D-Ala-containing peptides on the interface of solution and self-assemble monolayer, the binding between vancomycin and pentapeptide (Lys-Lys-Gly-D-Ala-D-Ala) was investigated by flow injection surface plasmon resonance (FI-SPR) and flow injection quartz crystal microbalance (FI-QCM). To facilitate the formation of a compact vancomycin adsorbates layer with a uniform surface orientation, vancomycin molecules were attached onto a preformed alkanethiol self-assembled monolayer. By optimizing the conditions for the binding between Lys-Lys-Gly-D-Ala-D-Ala and vancomycin on the assembled chip, the detecting limit of Lys-Lys-Gly-D-Ala-D-Ala was greatly improved (reaching 0.5 ×10^- 6 mol/L or 7.5 × 10^-12 mol). The equilibrium constant of the association of Lys-Lys-Gly-D-Ala-D-Ala with vancomycin was also obtained (KAds=5.0×10^4 L/tool).
文摘In this work, under pressure 5.4 GPa and temperature 1250-1400°C, large gem-diamond single crystals with perfect shape and different content of additive boron were synthesized using temperature gradient method. High-purity boron powders were added as boron source into the graphite powder, and the effects of additive boron on crystal growth habit were investigated in detail. The relationship between the growth rate and the amount of additive boron was studied. The scanning electron microscopy was employed to study the morphology of boron-doped diamond crystals. Raman spectroscopy and Hall measurements were used to investigate the crystal structures and the carrier concentration, respectively. The results show that with the increase of the content of boron added into graphite powder, the crystal growth rate and the carrier concentration increase firstly, and decrease afterwards, and the zone-center phonon line at 1332 cm 1 has small shift to lower energy. The defects occur on the crystal surface when excessive boron is added in the synthesis system.
基金sponsored by the National Key Basic Research Program of China(2013CB933200)China National Funds for Distinguished Young Scientists(51225202)+2 种基金National Natural Science Foundation of China(51502330)shanghai international cooperation project(16520710200)Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures(SKL201604)
文摘Hierarchically porous single-crystalline nanosized zeolites as heterogeneous catalysts show great poten- tial in fine chemistry because they offer more rich hierarchically porous channels for the mass transfer and molecular diffusion. However, the synthesis of hierarchically porous nanosized zeolites generally requires the assistance of templates acting as the mesoporogens, which limits its popularity. Herein, we report a one-pot and template-free synthesis of hierarchically porous single-crystalline nanosized zeolite beta only by introducing sodium carbonate in precursor solution. The resulted sample features the extraordinary properties, including the uniform nanocrystal (200-300 nm), high pore volume (0.65 cm3g 1) and the hierarchical pore-size distribution (e.g., 2-8 and 90-150 nm). After slicing pro- cessing, it is interestingly found that a large number of interconnected mesopores penetrate throughout whole material, which enables the hierarchically porous nanosized zeolite beta remarkably superior cat- alytic activity than the conventional zeolite beta in condensation of henzaldehyde with ethanol at room temperature. More importantly, this one-pot sodium carbonate-assisted synthetic strategy is highly ver- satile, which has also been successfully developed to synthesize hierarchically porous nanosized single- crystalline zeolites ZSM-5 and TS.