Seismic inversion is one of the most widely used technologies for reservoir prediction. Many good results have been obtained but sometimes it fails to differentiate the lithologies and identify the fluids. However, se...Seismic inversion is one of the most widely used technologies for reservoir prediction. Many good results have been obtained but sometimes it fails to differentiate the lithologies and identify the fluids. However, seismic prestack elastic inversion based on rock physics modeling and analysis introduced in this paper is a significant method that can help seismic inversion and interpretation reach a new quantitative (or semi-quantitative) level from traditional qualitative interpretation. By doing rock physics modeling and forward perturbation analysis, we can quantitatively analyze the essential relationships between rock properties and seismic responses and try to find the sensitive elastic properties to the lithology, porosity, fluid type, and reservoir saturation. Finally, standard rock physics templates (RPT) can be built for specific reservoirs to guide seismic inversion interpretation results for reservoir characterization and fluids identification purpose. The gas sand distribution results of the case study in this paper proves that this method has unparalleled advantages over traditional post-stack methods, by which we can perform reservoir characterization and seismic data interpretation more quantitatively and efficiently.展开更多
Rock-physics models are constructed for hydrate-bearing sediments in the Qilian Mountains permafrost region using the K–T equation model, and modes I and II of the effective medium model. The K–T equation models the...Rock-physics models are constructed for hydrate-bearing sediments in the Qilian Mountains permafrost region using the K–T equation model, and modes I and II of the effective medium model. The K–T equation models the seismic wave propagation in a two-phase medium to determine the elastic moduli of the composite medium. In the effective medium model, mode I, the hydrate is a component of the pore inclusions in mode I and in mode II it is a component of the matrix. First, the P-wave velocity, S-wave velocity, density, bulk modulus, and shear modulus of the sediment matrix are extracted from logging data.. Second, based on the physical properties of the main components of the sediments, rock-physics model is established using the K–T equation, and two additional rock-physics models are established assuming different hydrate-filling modes for the effective medium. The model and actual velocity data for the hydrate-bearing sediments are compared and it is found that the rock-physics model for the hydrate-filling mode II well reproduces the actual data.展开更多
Based on the current development of industrial real estate of Jiangxi Province, comprehensive analysis was conducted to 6 aspects using the idea of diamond model, namely, factor conditions, demand conditions, related ...Based on the current development of industrial real estate of Jiangxi Province, comprehensive analysis was conducted to 6 aspects using the idea of diamond model, namely, factor conditions, demand conditions, related and supporting industries, firm strategy, structure and rivalry, government and chance through the comparison with the other industrial real estates and analysis on horizontal competition in China. Development countermeasures were investigated to improve the competitiveness of the industrial real estate in Guangxi, putting forward the strategies of developing the role of government and business, seizing the opportunities of the times, city-industry integration development, implementation of industrial integration and integration of city development, the implementation of industrial integration and investment planning.展开更多
Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock ph...Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.展开更多
This paper presents the detailed results and analyses on the ecological footprints and bio-capacities of the individual cities and the province as a whole for the year 2001, providing a clear picture of sustainability...This paper presents the detailed results and analyses on the ecological footprints and bio-capacities of the individual cities and the province as a whole for the year 2001, providing a clear picture of sustainability for the province. Results show that the ecological footprints of most cities in Liaoning exceeded their respective bio-capacities, incurring high ecological deficits. The ecological deficit of the province as a whole was 1.31 ha/cap. Those cities with resources extraction and/or primary material-making as their major industries constitute the "ecologically black band", whose ecological deficits ranged from 2.45 to 5.23 ha/cap, the highest of all cities in the province. Fossil energy consumption was the major source of footprint amounting to 1.63 ha/cap at the provincial level, taking up 67.3% of the total. For cropland, modest ecological surpluses occurred in Jinzhou, Tieling, Huludao, and Panjin while modest ecological deficits in Dalian, Benxi, Fushun, and Dandong, resulting in an overall surplus for the province. Liaoning had a certain level of surplus in fishing ground (water area), mainly distributed in the coastal cities of Dalian, Panjin, Huludao, Yingkou, Jinzhou, and Dandong. Most cities had a small ecological deficit in pasture and all had a small ecological surplus in forest. The eco-efficiency, expressed as GDP value per hectare of footprint, exhibits high variations among the cities, with the highest (Shenyang) more than 10 times the lowest (Fuxin). Cities with manufacture, high-tech, and better developed service industries had high eco-efficiency, while those with resources extraction, primary material-making, and less developed service industries had low eco-efficiency. Based on the components and geographical distribution of ecological footprint, strategic policy implications are outlined for Liaoning’s development toward a sustainable future.展开更多
The shales of the Qiongzhusi Formation and Wufeng-Longmaxi Formations at Sichuan Basin and surrounding areas are presently the most important stratigraphic horizons for shale gas exploration and development in China. ...The shales of the Qiongzhusi Formation and Wufeng-Longmaxi Formations at Sichuan Basin and surrounding areas are presently the most important stratigraphic horizons for shale gas exploration and development in China. However, the regional characteristics of the seismic elastic properties need to be better determined. The ultrasonic velocities of shale samples were measured under dry conditions and the relations between elastic properties and petrology were systemically analyzed. The results suggest that 1) the effective porosity is positively correlated with clay content but negatively correlated with brittle minerals, 2) the dry shale matrix consists of clays, quartz, feldspars, and carbonates, and 3) organic matter and pyrite are in the pore spaces, weakly coupled with the shale matrix. Thus, by assuming that all connected pores are only present in the clay minerals and using the Gassmann substitution method to calculate the elastic effect of organic matter and pyrite in the pores, a relatively simple rock-physics model was constructed by combining the self-consistent approximation (SCA), the differential effective medium (DEM), and Gassmann's equation. In addition, the effective pore aspect ratio was adopted from the sample averages or estimated from the carbonate content. The proposed model was used to predict the P-wave velocities and generally matched the ultrasonic measurements very well.展开更多
The data on the hillslope and channelized debris flows in the Shitou area of central Taiwan occurred during Typhoons Toraji and Nali in 2001 were applied in this paper. The geomorphic parameters, including the flow le...The data on the hillslope and channelized debris flows in the Shitou area of central Taiwan occurred during Typhoons Toraji and Nali in 2001 were applied in this paper. The geomorphic parameters, including the flow length, gully gradient, drainage area and form factor of the debris flows were determined by spatial analysis using a Geographic Information System (GIS) based on the data derived from field investigation, aerial photographs, and topographical maps. According to such determined geomorphic parameters, the threshold conditions and empirical equations, such as the relationship between the gully gradient and drainage area and that between gully length and drainage area and topographic parameter, are presented and used to distinguish the geomorphic characteristics between the channelized and hillslope debris flows.展开更多
Techniques of gully-specific debris flow hazard assessment develope d in four periods since the end of the 1980s have been discussed in the present paper. The improvement for the empirical assessment method is the sec...Techniques of gully-specific debris flow hazard assessment develope d in four periods since the end of the 1980s have been discussed in the present paper. The improvement for the empirical assessment method is the sectionalized function transformation for the factor value, rather than the classified logical transformation. The theoretical equation of the gully-specific debris flow haz ard is expressed as the definite integral of an exponential function and its num erical solution is expressed by the Poisson Limit Equation. Current methods for assessment of debris flow hazard in China are still valid and practical. The fur ther work should be put on the study of the reliability (or uncertainty) of the techniques. For the future, we should give a high priority to the relationship b etween debris flow magnitude and its frequency of occurrence, make more developm ents of prediction model on debris flow magnitude, so as to finally reach the go al of assessing the hazard of debris flow by theoretical model, and realize both actuality assessment and prediction appraisal of debris flow.展开更多
The seismic computed tomography (CT) method is derived from the basic principles of X-ray section scanning first applied in medical science. The method records P-wave arrivals between shots and receivers in separate...The seismic computed tomography (CT) method is derived from the basic principles of X-ray section scanning first applied in medical science. The method records P-wave arrivals between shots and receivers in separate boreholes. Using the velocity information from 2D seismic P-wave arrival inversion, we can determine the distribution of velocity in rock and soil bodies. This paper introduces a practical case of using the seismic CT method for detecting the structure of the rocks for tunnel engineering and to utilize SIRT algorithms for doing first arrival time iterative inversion. Compared with other exploration methods, it is more efficient and accurate.展开更多
China has achieved much during recent years in the area of lithospheric physics research and promoted the development of the geosciences (Teng, 2004). However, in the 21^st century, national needs and policy challen...China has achieved much during recent years in the area of lithospheric physics research and promoted the development of the geosciences (Teng, 2004). However, in the 21^st century, national needs and policy challenges the science of lithospheric physics. I suggest a general analysis, research, and development direction for lithospheric physics and point out clearly the content, core problems, and key scientific problems in this field. The realization of the earth and the discovery of the basic mechanisms of mountains, basins, minerals, and natural disasters depend basically on high-resolution observations of geophysics, the delineation of the fine structure of crust and mantle (2D and 3D) inside the lithosphere, substance and energy exchanges in the deep earth, the process of deep physical, mechanical, and chemical actions, and deep dynamical response. Therefore, geophysics should be the pioneer in the geosciences field in the first half of the 21^st century. I end with an analysis and discussion of some problems and difficulties in the research of lithospheric physics.展开更多
This paper summarizes the technological progress of the Chinese petroleum geophysical industry in recent years and analyzes in detail the trend of development in the petroleum industry as well as the main challenges t...This paper summarizes the technological progress of the Chinese petroleum geophysical industry in recent years and analyzes in detail the trend of development in the petroleum industry as well as the main challenges to geophysical techniques on the mainland. Proposals to improve the situation have also been put forward.展开更多
Field SZ36-1 is a water-flooded heavy oil reservoir with high porosity and unconsolidated sand. The recovery rate is low so that it becomes a challenge for production. Time-lapse seismic data is studied to improve the...Field SZ36-1 is a water-flooded heavy oil reservoir with high porosity and unconsolidated sand. The recovery rate is low so that it becomes a challenge for production. Time-lapse seismic data is studied to improve the oil recovery for this field, This feasibility study analyzes the possible time-lapse seismic attribute spatial distribution using dynamic data and the reservoir model to determine the optimum time to acquire a new seismic survey. Based on the study, it is found that the time-lapse seismic response for this unconsolidated sand has a strong signature due to solution gas when the reservoir pressure is below the bubble point. This indicates that acquiring a new survey after 10 years of production is appropriate for a time-lapse seismic application.展开更多
The cause and mechanism of fly rock in geological condition of weak intercalation are analyzed.According to the features of fly rock caused by weak intercalation,the differences of fly rock caused in weak intercalatio...The cause and mechanism of fly rock in geological condition of weak intercalation are analyzed.According to the features of fly rock caused by weak intercalation,the differences of fly rock caused in weak intercalation and general condition are distinguished.Specific to complicated circumstance of weak intercalation and town,the control measures of fly rock are given.With project examples,the control measures are scientific and rational,and have important project value.展开更多
The occurrence of debris flow is affected by many factors. Risk zoning of debris flow plays a vital role in the early-warning and prediction of abrupt geological hazards, and exploration of new method is needed in the...The occurrence of debris flow is affected by many factors. Risk zoning of debris flow plays a vital role in the early-warning and prediction of abrupt geological hazards, and exploration of new method is needed in the early-warning and prediction of geological hazards. The extension theory is a new method to solve contradiction matters. Based on extension theory, AHP and GIS, the risk zoning model of debris flow was established in this paper. The result of this research provides a new way in the risk zoning, early-warning and prediction of debris flow展开更多
The seismic velocities are strongly influenced by porosity and degree of water saturation, as well as other petrophysical properties, such as density and elastic properties of the rocks. In this paper, the saturation ...The seismic velocities are strongly influenced by porosity and degree of water saturation, as well as other petrophysical properties, such as density and elastic properties of the rocks. In this paper, the saturation of water percentage for sandstones (SW%) has been calculated by mathematical equation, which is based on the relation between the seismic velocity of water to the seismic velocity obtained in the field (for p-wave velocity only). The results of this equation which ranged between (30% to 100%) are connected with the results of seismic velocity-porosity relation for saturated sandstone through model, this model can be used for determining the porosity (Φ) and water saturation percentage (SW%) of the sandstones in the same time.展开更多
A methodology is developed for interactive risk assessment of physical infrastructure and spatially distributed response systems subjected to debris flows.The proposed framework is composed of three components,namely ...A methodology is developed for interactive risk assessment of physical infrastructure and spatially distributed response systems subjected to debris flows.The proposed framework is composed of three components,namely geotechnical engineering,geographical information systems and disaster management.With the integration of slope stability analysis,hazard scenario and susceptibility,geological conditions are considered as temporary static data,while meteorological conditions are treated as dynamic data with a focus on typhoons.In this research,the relevant parameters required for database building are defined,and the procedures for building the geological database and meteorological data sets are explained.Based on the concepts and data sets,Nantou and Hualien in Taiwan are used as the areas for case studies.展开更多
Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial var...Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial variability of soil pH, and compare the efficiency of managing soil pH through site-specific method vs. uniform lime application. The study was conducted on three sites with study sites I and II (23°50' S; 29°40' E), and study sites IIl (23°59' S; 28°52' E) adjacent to each other in the semi-arid regions of the Limpopo Province, South Africa. Soil samples were taken in four replicates from geo-referenced locations on a regular grid of 30 m. Soils were analyzed for pH, and SMP buffer pH. Soil maps were produced with Geographic Information System (GIS) software, and soil pH datasets were interpolated using a geostatistical tool of inverse distance weighing (IDW). Soil pH in the fields varied from 3.93 to 7.00. An excess amount of lime as high as 30 t/ha under uniform lime application were recorded. These recommendations were in excess on field areas that needed little or no lime applications. Again, there was an under applications of lime as much as 35 t/ha for uniform liming applications. This under- and over-recommendations of lime based on average soil pH values suggests that uniform soil acidity correction and soil pH management strategy is not an appropriate strategy to be adopted in these fields with spatially variable soils. The field can be divided into lime application zones of (1) high rates of lime, (2) low rates of lime and (3) areas that requires no lime at all so that lime rates are applied per zone. A key to site-specific soil acidity correction with lime is to reach ideal soil pH for the crop in all parts of the field.展开更多
The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,t...The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency.展开更多
The determination of the geographical origin as well as the adulteration of natural products is a technical problem due to similar chemical composition between an adulterant and the original. It is assumed that tartar...The determination of the geographical origin as well as the adulteration of natural products is a technical problem due to similar chemical composition between an adulterant and the original. It is assumed that tartaric acid comes from natural sources, however there is no specific regulation for this claim. This paper describes the use of isotope mass spectrometry associated with chemometrics to classify different samples of tartaric acid. The results showed that the variables δ^13C, δ^18O and δ^2H allowed the discrimination of tartaric acid samples by geographical origin and production method. By using a combination of chemometfic analysis it was possible to confirm a notoriousseparation of the samples. Thus, this is a promising method to be applied in the quality control and authenticity of tartaric acid.展开更多
文摘Seismic inversion is one of the most widely used technologies for reservoir prediction. Many good results have been obtained but sometimes it fails to differentiate the lithologies and identify the fluids. However, seismic prestack elastic inversion based on rock physics modeling and analysis introduced in this paper is a significant method that can help seismic inversion and interpretation reach a new quantitative (or semi-quantitative) level from traditional qualitative interpretation. By doing rock physics modeling and forward perturbation analysis, we can quantitatively analyze the essential relationships between rock properties and seismic responses and try to find the sensitive elastic properties to the lithology, porosity, fluid type, and reservoir saturation. Finally, standard rock physics templates (RPT) can be built for specific reservoirs to guide seismic inversion interpretation results for reservoir characterization and fluids identification purpose. The gas sand distribution results of the case study in this paper proves that this method has unparalleled advantages over traditional post-stack methods, by which we can perform reservoir characterization and seismic data interpretation more quantitatively and efficiently.
基金supported by the Institute of Geophysical and Geochemical Exploration(IGGE)CAGS of China(No.WH201207)
文摘Rock-physics models are constructed for hydrate-bearing sediments in the Qilian Mountains permafrost region using the K–T equation model, and modes I and II of the effective medium model. The K–T equation models the seismic wave propagation in a two-phase medium to determine the elastic moduli of the composite medium. In the effective medium model, mode I, the hydrate is a component of the pore inclusions in mode I and in mode II it is a component of the matrix. First, the P-wave velocity, S-wave velocity, density, bulk modulus, and shear modulus of the sediment matrix are extracted from logging data.. Second, based on the physical properties of the main components of the sediments, rock-physics model is established using the K–T equation, and two additional rock-physics models are established assuming different hydrate-filling modes for the effective medium. The model and actual velocity data for the hydrate-bearing sediments are compared and it is found that the rock-physics model for the hydrate-filling mode II well reproduces the actual data.
基金Supported by the General Project for Humanities and Social Science of the Institutions of Higher Education in Jiangxi Province(GL1458)~~
文摘Based on the current development of industrial real estate of Jiangxi Province, comprehensive analysis was conducted to 6 aspects using the idea of diamond model, namely, factor conditions, demand conditions, related and supporting industries, firm strategy, structure and rivalry, government and chance through the comparison with the other industrial real estates and analysis on horizontal competition in China. Development countermeasures were investigated to improve the competitiveness of the industrial real estate in Guangxi, putting forward the strategies of developing the role of government and business, seizing the opportunities of the times, city-industry integration development, implementation of industrial integration and integration of city development, the implementation of industrial integration and investment planning.
基金supported by the National 973 project(Nos.2014CB239006 and 2011CB202402)the National Natural Science Foundation of China(Nos.41104069 and 41274124)+1 种基金Sinopec project(No.KJWX2014-05)the Fundamental Research Funds for the Central Universities(No.R1401005A)
文摘Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.
基金Excellence midlife and youth teacher foundation of Ministry of Education No.1711
文摘This paper presents the detailed results and analyses on the ecological footprints and bio-capacities of the individual cities and the province as a whole for the year 2001, providing a clear picture of sustainability for the province. Results show that the ecological footprints of most cities in Liaoning exceeded their respective bio-capacities, incurring high ecological deficits. The ecological deficit of the province as a whole was 1.31 ha/cap. Those cities with resources extraction and/or primary material-making as their major industries constitute the "ecologically black band", whose ecological deficits ranged from 2.45 to 5.23 ha/cap, the highest of all cities in the province. Fossil energy consumption was the major source of footprint amounting to 1.63 ha/cap at the provincial level, taking up 67.3% of the total. For cropland, modest ecological surpluses occurred in Jinzhou, Tieling, Huludao, and Panjin while modest ecological deficits in Dalian, Benxi, Fushun, and Dandong, resulting in an overall surplus for the province. Liaoning had a certain level of surplus in fishing ground (water area), mainly distributed in the coastal cities of Dalian, Panjin, Huludao, Yingkou, Jinzhou, and Dandong. Most cities had a small ecological deficit in pasture and all had a small ecological surplus in forest. The eco-efficiency, expressed as GDP value per hectare of footprint, exhibits high variations among the cities, with the highest (Shenyang) more than 10 times the lowest (Fuxin). Cities with manufacture, high-tech, and better developed service industries had high eco-efficiency, while those with resources extraction, primary material-making, and less developed service industries had low eco-efficiency. Based on the components and geographical distribution of ecological footprint, strategic policy implications are outlined for Liaoning’s development toward a sustainable future.
基金sponsored by the National Natural Science Foundation of China(No.41274185 and 41676032)
文摘The shales of the Qiongzhusi Formation and Wufeng-Longmaxi Formations at Sichuan Basin and surrounding areas are presently the most important stratigraphic horizons for shale gas exploration and development in China. However, the regional characteristics of the seismic elastic properties need to be better determined. The ultrasonic velocities of shale samples were measured under dry conditions and the relations between elastic properties and petrology were systemically analyzed. The results suggest that 1) the effective porosity is positively correlated with clay content but negatively correlated with brittle minerals, 2) the dry shale matrix consists of clays, quartz, feldspars, and carbonates, and 3) organic matter and pyrite are in the pore spaces, weakly coupled with the shale matrix. Thus, by assuming that all connected pores are only present in the clay minerals and using the Gassmann substitution method to calculate the elastic effect of organic matter and pyrite in the pores, a relatively simple rock-physics model was constructed by combining the self-consistent approximation (SCA), the differential effective medium (DEM), and Gassmann's equation. In addition, the effective pore aspect ratio was adopted from the sample averages or estimated from the carbonate content. The proposed model was used to predict the P-wave velocities and generally matched the ultrasonic measurements very well.
文摘The data on the hillslope and channelized debris flows in the Shitou area of central Taiwan occurred during Typhoons Toraji and Nali in 2001 were applied in this paper. The geomorphic parameters, including the flow length, gully gradient, drainage area and form factor of the debris flows were determined by spatial analysis using a Geographic Information System (GIS) based on the data derived from field investigation, aerial photographs, and topographical maps. According to such determined geomorphic parameters, the threshold conditions and empirical equations, such as the relationship between the gully gradient and drainage area and that between gully length and drainage area and topographic parameter, are presented and used to distinguish the geomorphic characteristics between the channelized and hillslope debris flows.
文摘Techniques of gully-specific debris flow hazard assessment develope d in four periods since the end of the 1980s have been discussed in the present paper. The improvement for the empirical assessment method is the sectionalized function transformation for the factor value, rather than the classified logical transformation. The theoretical equation of the gully-specific debris flow haz ard is expressed as the definite integral of an exponential function and its num erical solution is expressed by the Poisson Limit Equation. Current methods for assessment of debris flow hazard in China are still valid and practical. The fur ther work should be put on the study of the reliability (or uncertainty) of the techniques. For the future, we should give a high priority to the relationship b etween debris flow magnitude and its frequency of occurrence, make more developm ents of prediction model on debris flow magnitude, so as to finally reach the go al of assessing the hazard of debris flow by theoretical model, and realize both actuality assessment and prediction appraisal of debris flow.
文摘The seismic computed tomography (CT) method is derived from the basic principles of X-ray section scanning first applied in medical science. The method records P-wave arrivals between shots and receivers in separate boreholes. Using the velocity information from 2D seismic P-wave arrival inversion, we can determine the distribution of velocity in rock and soil bodies. This paper introduces a practical case of using the seismic CT method for detecting the structure of the rocks for tunnel engineering and to utilize SIRT algorithms for doing first arrival time iterative inversion. Compared with other exploration methods, it is more efficient and accurate.
基金Project supported by Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering (Grant No. KZCX3-SW-148) and by the National Natural Science Foundation of China (Grant No. 4043009).
文摘China has achieved much during recent years in the area of lithospheric physics research and promoted the development of the geosciences (Teng, 2004). However, in the 21^st century, national needs and policy challenges the science of lithospheric physics. I suggest a general analysis, research, and development direction for lithospheric physics and point out clearly the content, core problems, and key scientific problems in this field. The realization of the earth and the discovery of the basic mechanisms of mountains, basins, minerals, and natural disasters depend basically on high-resolution observations of geophysics, the delineation of the fine structure of crust and mantle (2D and 3D) inside the lithosphere, substance and energy exchanges in the deep earth, the process of deep physical, mechanical, and chemical actions, and deep dynamical response. Therefore, geophysics should be the pioneer in the geosciences field in the first half of the 21^st century. I end with an analysis and discussion of some problems and difficulties in the research of lithospheric physics.
文摘This paper summarizes the technological progress of the Chinese petroleum geophysical industry in recent years and analyzes in detail the trend of development in the petroleum industry as well as the main challenges to geophysical techniques on the mainland. Proposals to improve the situation have also been put forward.
文摘Field SZ36-1 is a water-flooded heavy oil reservoir with high porosity and unconsolidated sand. The recovery rate is low so that it becomes a challenge for production. Time-lapse seismic data is studied to improve the oil recovery for this field, This feasibility study analyzes the possible time-lapse seismic attribute spatial distribution using dynamic data and the reservoir model to determine the optimum time to acquire a new seismic survey. Based on the study, it is found that the time-lapse seismic response for this unconsolidated sand has a strong signature due to solution gas when the reservoir pressure is below the bubble point. This indicates that acquiring a new survey after 10 years of production is appropriate for a time-lapse seismic application.
文摘The cause and mechanism of fly rock in geological condition of weak intercalation are analyzed.According to the features of fly rock caused by weak intercalation,the differences of fly rock caused in weak intercalation and general condition are distinguished.Specific to complicated circumstance of weak intercalation and town,the control measures of fly rock are given.With project examples,the control measures are scientific and rational,and have important project value.
基金Supported by Project of Special Foundation for Outstanding Scientists of Beijing, China(No.20051D1100205)
文摘The occurrence of debris flow is affected by many factors. Risk zoning of debris flow plays a vital role in the early-warning and prediction of abrupt geological hazards, and exploration of new method is needed in the early-warning and prediction of geological hazards. The extension theory is a new method to solve contradiction matters. Based on extension theory, AHP and GIS, the risk zoning model of debris flow was established in this paper. The result of this research provides a new way in the risk zoning, early-warning and prediction of debris flow
文摘The seismic velocities are strongly influenced by porosity and degree of water saturation, as well as other petrophysical properties, such as density and elastic properties of the rocks. In this paper, the saturation of water percentage for sandstones (SW%) has been calculated by mathematical equation, which is based on the relation between the seismic velocity of water to the seismic velocity obtained in the field (for p-wave velocity only). The results of this equation which ranged between (30% to 100%) are connected with the results of seismic velocity-porosity relation for saturated sandstone through model, this model can be used for determining the porosity (Φ) and water saturation percentage (SW%) of the sandstones in the same time.
文摘A methodology is developed for interactive risk assessment of physical infrastructure and spatially distributed response systems subjected to debris flows.The proposed framework is composed of three components,namely geotechnical engineering,geographical information systems and disaster management.With the integration of slope stability analysis,hazard scenario and susceptibility,geological conditions are considered as temporary static data,while meteorological conditions are treated as dynamic data with a focus on typhoons.In this research,the relevant parameters required for database building are defined,and the procedures for building the geological database and meteorological data sets are explained.Based on the concepts and data sets,Nantou and Hualien in Taiwan are used as the areas for case studies.
文摘Knowledge and management of soil pH, particularly soil acidity across spatially variable soils is important, although this is greatly ignored by farmers. The objective of the study was to evaluate in-field spatial variability of soil pH, and compare the efficiency of managing soil pH through site-specific method vs. uniform lime application. The study was conducted on three sites with study sites I and II (23°50' S; 29°40' E), and study sites IIl (23°59' S; 28°52' E) adjacent to each other in the semi-arid regions of the Limpopo Province, South Africa. Soil samples were taken in four replicates from geo-referenced locations on a regular grid of 30 m. Soils were analyzed for pH, and SMP buffer pH. Soil maps were produced with Geographic Information System (GIS) software, and soil pH datasets were interpolated using a geostatistical tool of inverse distance weighing (IDW). Soil pH in the fields varied from 3.93 to 7.00. An excess amount of lime as high as 30 t/ha under uniform lime application were recorded. These recommendations were in excess on field areas that needed little or no lime applications. Again, there was an under applications of lime as much as 35 t/ha for uniform liming applications. This under- and over-recommendations of lime based on average soil pH values suggests that uniform soil acidity correction and soil pH management strategy is not an appropriate strategy to be adopted in these fields with spatially variable soils. The field can be divided into lime application zones of (1) high rates of lime, (2) low rates of lime and (3) areas that requires no lime at all so that lime rates are applied per zone. A key to site-specific soil acidity correction with lime is to reach ideal soil pH for the crop in all parts of the field.
基金supported by Youth Science Foundation of the National Natural Science Foundation of China(No.51104156)the Fundamental Research Funds for the Central Universities of China(No.2013QNB02)the 12th Five Year National Science and Technology Support Key Project of China(Nos. 2012BAK04B07-2 and 2012BAK09B01-04)
文摘The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency.
文摘The determination of the geographical origin as well as the adulteration of natural products is a technical problem due to similar chemical composition between an adulterant and the original. It is assumed that tartaric acid comes from natural sources, however there is no specific regulation for this claim. This paper describes the use of isotope mass spectrometry associated with chemometrics to classify different samples of tartaric acid. The results showed that the variables δ^13C, δ^18O and δ^2H allowed the discrimination of tartaric acid samples by geographical origin and production method. By using a combination of chemometfic analysis it was possible to confirm a notoriousseparation of the samples. Thus, this is a promising method to be applied in the quality control and authenticity of tartaric acid.