Under fully mechanized, large mining height top coal caving conditions, the shield beam slope angle of the support increases due to the enlargement of the top coal breaking and caving space. This results in a change o...Under fully mechanized, large mining height top coal caving conditions, the shield beam slope angle of the support increases due to the enlargement of the top coal breaking and caving space. This results in a change of the caving window location and dimensions and, therefore, the granular coal-gangue movement and flows provide new characteristics during top coal caving. The main inferences we draw are as follows. Firstly, after shifting the supports, the caved top coal layer line and the coal gangue boundary line become steeper and are clearly larger than those under common mining heights. Secondly, during the top coal caving procedure, the speed of the coal-gangue flow increases and at the same drawing interval, the distance between the coal-gangue boundary line and the top beam end is reduced. Thirdly, affected by the drawing ratio, the slope angle of the shield beam and the dimensions of the caving window, it is easy to mix the gangue. A rational drawing interval will cause the coal-gangue boundary line to be slightly behind the down tail boom lower boundary. This rational drawing interval under conditions of large mining heights has been analyzed and determined.展开更多
The size distribution of a muck pile depends not on only the blasting standard but also on the mechanical properties,joint system,and crack density of the rock mass. As,the cracks in the rock masses are especially hea...The size distribution of a muck pile depends not on only the blasting standard but also on the mechanical properties,joint system,and crack density of the rock mass. As,the cracks in the rock masses are especially heavily developed at the limestone quar- ries in Japan,they,along with the joints,have a large impact on the effects of blasting, such as the size of the muck pile.Therefore,if the joint system and/or crack density in a rock mass can be determined and quantitatively evaluated,the blasting operation can be conducted more effectively,efficiently and safely.However,guidelines for designing ap- propriate blasting standards based on the rock mass conditions have not yet been scien- tifically developed.Therefore,blasting tests were conducted on different mines and faces, under different geological conditions and blasting standards,in order to determine the im- pacts of each factor on the effects of blasting.Summarized the results of a series of blast- ing tests and described the impacts of geological conditions on the size of the muck pile produced by blast.展开更多
基金Project 50774079 supported by the National Natural Science Foundation of China
文摘Under fully mechanized, large mining height top coal caving conditions, the shield beam slope angle of the support increases due to the enlargement of the top coal breaking and caving space. This results in a change of the caving window location and dimensions and, therefore, the granular coal-gangue movement and flows provide new characteristics during top coal caving. The main inferences we draw are as follows. Firstly, after shifting the supports, the caved top coal layer line and the coal gangue boundary line become steeper and are clearly larger than those under common mining heights. Secondly, during the top coal caving procedure, the speed of the coal-gangue flow increases and at the same drawing interval, the distance between the coal-gangue boundary line and the top beam end is reduced. Thirdly, affected by the drawing ratio, the slope angle of the shield beam and the dimensions of the caving window, it is easy to mix the gangue. A rational drawing interval will cause the coal-gangue boundary line to be slightly behind the down tail boom lower boundary. This rational drawing interval under conditions of large mining heights has been analyzed and determined.
文摘The size distribution of a muck pile depends not on only the blasting standard but also on the mechanical properties,joint system,and crack density of the rock mass. As,the cracks in the rock masses are especially heavily developed at the limestone quar- ries in Japan,they,along with the joints,have a large impact on the effects of blasting, such as the size of the muck pile.Therefore,if the joint system and/or crack density in a rock mass can be determined and quantitatively evaluated,the blasting operation can be conducted more effectively,efficiently and safely.However,guidelines for designing ap- propriate blasting standards based on the rock mass conditions have not yet been scien- tifically developed.Therefore,blasting tests were conducted on different mines and faces, under different geological conditions and blasting standards,in order to determine the im- pacts of each factor on the effects of blasting.Summarized the results of a series of blast- ing tests and described the impacts of geological conditions on the size of the muck pile produced by blast.