Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the ox...Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the oxidation of nitric oxide(NO) under visible-light irradiation.The inclusion of pure Bi metal in the g-C3N4 layers markedly improved the light absorption of the Bi-CN composites from the ultraviolet to the near-infrared region because of the typical surface plasmon resonance of Bi metal.The separation and transfer of photogenerated charge carriers were greatly accelerated by the presence of built-in Mott-Schottky effects at the interface between Bi metal and g-C3N4.As a result,the Bi-CN composite photocatalysts exhibited considerably enhanced efficiency in the photocatalytic removal of NO compared with that of Bi metal or g-C3N4 alone.The pomegranate-like structure of the Bi-CN composites and an explanation for their improved photocatalytic activity were proposed.This work not only provides a design for highly efficient g-C3N4-based photocatalysts through modification with Bi metal,but also offers new insights into the mechanistic understanding of g-C3N4-based photo catalysis.展开更多
Extended light absorption and dynamic charge separation are vital factors that determine the effectivenessof photocatalysts.In this study,a nonmetallic plasmonic S‐scheme photocatalyst was fabricatedby loading 1D pla...Extended light absorption and dynamic charge separation are vital factors that determine the effectivenessof photocatalysts.In this study,a nonmetallic plasmonic S‐scheme photocatalyst was fabricatedby loading 1D plasmonic W_(18)O_(49)nanowires onto 2D g‐C_(3)N_(4)nanosheets.W_(18)O_(49)nanowiresplay the dual role of a light absorption antenna—that extends light adsorption—and a hot electrondonor—that assists the water reduction reaction in a wider light spectrum range.Moreover,S‐scheme charge transfer resulting from the matching bandgaps of W_(18)O_(49)and g‐C_(3)N_(4)can lead tostrong redox capability and high migration speed of the photoinduced charges.Consequently,in thisstudy,W_(18)O_(49)/g‐C_(3)N_(4)hybrids exhibited higher photocatalytic H2 generation than that of pristineg‐C_(3)N_(4)under light irradiation of 420–550 nm.Furthermore,the H2 production rate of thebest‐performing W_(18)O_(49)/g‐C_(3)N_(4)hybrid was 41.5μmol·g^(−1)·h^(−1)upon exposure to monochromaticlight at 550 nm,whereas pure g‐C_(3)N_(4)showed negligible activity.This study promotes novel andenvironmentally friendly hot‐electron‐assisted S‐scheme photocatalysts for the broad‐spectrumutilization of solar light.展开更多
Bismuth selenide(Bi_(2)Se_(3))is an attractive visible-light-responsive semiconductor that can absorb a full range of visible and near-infrared light.However,its poor redox capacity and rapid carrier recombination lim...Bismuth selenide(Bi_(2)Se_(3))is an attractive visible-light-responsive semiconductor that can absorb a full range of visible and near-infrared light.However,its poor redox capacity and rapid carrier recombination limit its application in photocatalytic oxidation.In this study,we adopted Bi_(2)Se_(3)as the couple part of graphitic carbon nitride(g-C_(3)N_(4))to construct a Bi_(2)Se_(3)/g-C_(3)N_(4)composite photocatalyst.Through in situ fabrication,the self-developed Bi2O3/g-C_(3)N_(4)precursor was transformed into a Bi_(2)Se_(3)/g-C_(3)N_(4)heterojunction.The as-prepared Bi_(2)Se_(3)/g-C_(3)N_(4)composite exhibited much higher visible-light-driven photocatalytic activity than pristine Bi_(2)Se_(3)and g-C_(3)N_(4)in the removal of phenol.The enhanced photocatalytic activity was ascribed to the S-scheme configuration of Bi_(2)Se_(3)/g-C_(3)N_(4);this was confirmed by the energy-level shift,photoluminescence analysis,computational structure study,and reactive-radical testing.In the S-scheme heterojunction,photo-excited electrons in the conduction band of g-C_(3)N_(4)migrate to the valence band of Bi_(2)Se_(3)and combine with the excited holes therein.By consuming less reactive carriers,the S-scheme heterojunction can not only effectively promote charge separation,but also preserve more reactive photo-generated carriers.This property enhances the photocatalytic activity.展开更多
The surface plasmonic resonance(SPR)effect of Bi can effectively improve the light absorption abilities and photogenerated charge carrier separation rate.In this study,a novel ternary heterojunction of g-C3N4/Bi2MoO6/...The surface plasmonic resonance(SPR)effect of Bi can effectively improve the light absorption abilities and photogenerated charge carrier separation rate.In this study,a novel ternary heterojunction of g-C3N4/Bi2MoO6/Bi(CN/BMO/Bi)hollow microsphere was successfully fabricated through solvothermal and in situ reduction methods.The results revealed that the optimal ternary 0.4 CN/BMO/9 Bi photocatalyst exhibited the highest photocatalytic efficiency toward rhodamine B(RhB)degradation with nine times that of pure BMO.The DRS and valence band of the X-ray photoelectron spectroscopy spectrum demonstrate that the band structure of 0.4 CN/BMO/9 Bi is a z-scheme structure.Quenching experiments also provided solid evidence that the·O^2-(at-0.33 eV)is the main species during dye degradation,and the conduction band of g-C3N4 is only the reaction site,demonstrating that the transfer of photogenerated charge carriers of g-C3N4/Bi2 MoO 6/Bi is through an indirect z-scheme structure.Thus,the enhanced photocatalytic performance was mainly ascribed to the synergetic effect of heterojunction structures between g-C3N4 and Bi2MoO6 and the SPR effect of Bi doping,resulting in better optical absorption ability and a lower combination rate of photogenerated charge carriers.The findings in this work provide insight into the synergism of heterostructures and the SPR absorption ability in wastewater treatment.展开更多
基金supported by the National Program on Key Basic Research Project (2016YFA0203000)the Early Career Scheme (ECS 809813) from the Research Grant Council, Hong Kong SAR Government+2 种基金the Croucher Foundation Visitorship for PRC Scholars 2015/16 at The Education University of Hong Kongthe National Natural Science Foundation of China (51672312, 21373275)the Program for New Century Excellent Talents in University (NCET-12-0668)~~
文摘Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the oxidation of nitric oxide(NO) under visible-light irradiation.The inclusion of pure Bi metal in the g-C3N4 layers markedly improved the light absorption of the Bi-CN composites from the ultraviolet to the near-infrared region because of the typical surface plasmon resonance of Bi metal.The separation and transfer of photogenerated charge carriers were greatly accelerated by the presence of built-in Mott-Schottky effects at the interface between Bi metal and g-C3N4.As a result,the Bi-CN composite photocatalysts exhibited considerably enhanced efficiency in the photocatalytic removal of NO compared with that of Bi metal or g-C3N4 alone.The pomegranate-like structure of the Bi-CN composites and an explanation for their improved photocatalytic activity were proposed.This work not only provides a design for highly efficient g-C3N4-based photocatalysts through modification with Bi metal,but also offers new insights into the mechanistic understanding of g-C3N4-based photo catalysis.
文摘Extended light absorption and dynamic charge separation are vital factors that determine the effectivenessof photocatalysts.In this study,a nonmetallic plasmonic S‐scheme photocatalyst was fabricatedby loading 1D plasmonic W_(18)O_(49)nanowires onto 2D g‐C_(3)N_(4)nanosheets.W_(18)O_(49)nanowiresplay the dual role of a light absorption antenna—that extends light adsorption—and a hot electrondonor—that assists the water reduction reaction in a wider light spectrum range.Moreover,S‐scheme charge transfer resulting from the matching bandgaps of W_(18)O_(49)and g‐C_(3)N_(4)can lead tostrong redox capability and high migration speed of the photoinduced charges.Consequently,in thisstudy,W_(18)O_(49)/g‐C_(3)N_(4)hybrids exhibited higher photocatalytic H2 generation than that of pristineg‐C_(3)N_(4)under light irradiation of 420–550 nm.Furthermore,the H2 production rate of thebest‐performing W_(18)O_(49)/g‐C_(3)N_(4)hybrid was 41.5μmol·g^(−1)·h^(−1)upon exposure to monochromaticlight at 550 nm,whereas pure g‐C_(3)N_(4)showed negligible activity.This study promotes novel andenvironmentally friendly hot‐electron‐assisted S‐scheme photocatalysts for the broad‐spectrumutilization of solar light.
文摘Bismuth selenide(Bi_(2)Se_(3))is an attractive visible-light-responsive semiconductor that can absorb a full range of visible and near-infrared light.However,its poor redox capacity and rapid carrier recombination limit its application in photocatalytic oxidation.In this study,we adopted Bi_(2)Se_(3)as the couple part of graphitic carbon nitride(g-C_(3)N_(4))to construct a Bi_(2)Se_(3)/g-C_(3)N_(4)composite photocatalyst.Through in situ fabrication,the self-developed Bi2O3/g-C_(3)N_(4)precursor was transformed into a Bi_(2)Se_(3)/g-C_(3)N_(4)heterojunction.The as-prepared Bi_(2)Se_(3)/g-C_(3)N_(4)composite exhibited much higher visible-light-driven photocatalytic activity than pristine Bi_(2)Se_(3)and g-C_(3)N_(4)in the removal of phenol.The enhanced photocatalytic activity was ascribed to the S-scheme configuration of Bi_(2)Se_(3)/g-C_(3)N_(4);this was confirmed by the energy-level shift,photoluminescence analysis,computational structure study,and reactive-radical testing.In the S-scheme heterojunction,photo-excited electrons in the conduction band of g-C_(3)N_(4)migrate to the valence band of Bi_(2)Se_(3)and combine with the excited holes therein.By consuming less reactive carriers,the S-scheme heterojunction can not only effectively promote charge separation,but also preserve more reactive photo-generated carriers.This property enhances the photocatalytic activity.
基金financially supported by the Science Foundation of China University of Petroleum,Beijing(2462017YJRC048,2462018BJC005)the National Natural Science Foundation of China(51802351)~~
文摘The surface plasmonic resonance(SPR)effect of Bi can effectively improve the light absorption abilities and photogenerated charge carrier separation rate.In this study,a novel ternary heterojunction of g-C3N4/Bi2MoO6/Bi(CN/BMO/Bi)hollow microsphere was successfully fabricated through solvothermal and in situ reduction methods.The results revealed that the optimal ternary 0.4 CN/BMO/9 Bi photocatalyst exhibited the highest photocatalytic efficiency toward rhodamine B(RhB)degradation with nine times that of pure BMO.The DRS and valence band of the X-ray photoelectron spectroscopy spectrum demonstrate that the band structure of 0.4 CN/BMO/9 Bi is a z-scheme structure.Quenching experiments also provided solid evidence that the·O^2-(at-0.33 eV)is the main species during dye degradation,and the conduction band of g-C3N4 is only the reaction site,demonstrating that the transfer of photogenerated charge carriers of g-C3N4/Bi2 MoO 6/Bi is through an indirect z-scheme structure.Thus,the enhanced photocatalytic performance was mainly ascribed to the synergetic effect of heterojunction structures between g-C3N4 and Bi2MoO6 and the SPR effect of Bi doping,resulting in better optical absorption ability and a lower combination rate of photogenerated charge carriers.The findings in this work provide insight into the synergism of heterostructures and the SPR absorption ability in wastewater treatment.