期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
转移石墨烯内部缺陷及其MEMS压阻式微压传感器研究 被引量:2
1
作者 张琪 张栋梁 +1 位作者 庞星 赵玉龙 《中国测试》 CAS 北大核心 2020年第12期9-14,共6页
石墨烯受力后变形可以产生压阻效应,利用这个原理,制作石墨烯微压传感器。但是在实验中,发现石墨烯会产生诸多缺陷,进而影响石墨烯的压阻效应。因此,该文采用拉曼确认转移后SiO2基底上双层石墨烯的褶皱形成和缺陷形成很少。同时,采用XP... 石墨烯受力后变形可以产生压阻效应,利用这个原理,制作石墨烯微压传感器。但是在实验中,发现石墨烯会产生诸多缺陷,进而影响石墨烯的压阻效应。因此,该文采用拉曼确认转移后SiO2基底上双层石墨烯的褶皱形成和缺陷形成很少。同时,采用XPS确定石墨烯在制作传感器过程中表面的有N、O等污染原子吸附。AFM表面图像发现转移后的表面很平整。并采用MEMS工艺完成石墨烯微压传感器的制作,利用3D打印的腔体完成传感器的封装,通过气体微亚泵对传感器施加压力,得到压力测量量程在0~3 kPa,电阻温度系数极低。该研究可为石墨烯作为压阻传感器提供更细致的理论基础和技术指导。 展开更多
关键词 石墨传感器 MEMS 石墨烯压阻 缺陷 RAMAN XPS AFM
下载PDF
Highly Sensitive Flexible Pressure Sensors based on Graphene/Graphene Scrolls Multilayer Hybrid Films 被引量:2
2
作者 Yi-heng Zhai Tao Wang +3 位作者 Zhi-kai Qi Xiang-hua Kong Hang-xun Xu Heng-xing Ji 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第3期365-370,I0005-I0010,I0003,共7页
In recent years,flexible pressure sensors have attracted much attention owing to their potential applications in motion detection and wearable electronics.As a result,important innovations have been reported in both c... In recent years,flexible pressure sensors have attracted much attention owing to their potential applications in motion detection and wearable electronics.As a result,important innovations have been reported in both conductive materials and the underlying substrates,which are the two crucial components of a pressure sensor.1D materials like nanowires are being widely used as the conductive materials in flexible pressure sensors,but such sensors usually exhibit low performances mainly due to the lack of strong interfacial interactions between the substrates and 1D materials.In this paper,we report the use of graphene/graphene scrolls hybrid multilayers films as the conductive material and a microstructured polydimethylsiloxane substrate using Epipremnum aureum leaf as the template to fabricate highly sensitive pressure sensors.The 2D structure of graphene allows to strongly anchor the scrolls to ensure the improved adhesion between the highly conductive hybrid films and the patterned substrate.We attribute the increased sensitivity(3.5 k Pa^-1),fast response time(<50 ms),and the good reproducibility during 1000 loading-unloading cycles of the pressure sensor to the synergistic effect between the 1D scrolls and 2D graphene films.Test results demonstrate that these sensors are promising for electronic skins and motion detection applications. 展开更多
关键词 Pressure sensor Graphene scrolls Hybrid films Electronic skins
下载PDF
Highly pressure-sensitive graphene sponge fabricated by γ-ray irradiation reduction
3
作者 Tiezhu Zhang Tao Wang +6 位作者 Yali Guo Yiheng Zhai Aiqin Xiang Xuewu Ge Xianghua Kong Hangxun Xu Hengxing Ji 《Science China Materials》 SCIE EI CSCD 2018年第12期1596-1604,共9页
Graphene sponge(GS) with microscale size, high mechanical elasticity and electrical conductivity has attracted great interest as a sensing material for piezoresistive pressure sensor. However, GS offering a lower limi... Graphene sponge(GS) with microscale size, high mechanical elasticity and electrical conductivity has attracted great interest as a sensing material for piezoresistive pressure sensor. However, GS offering a lower limit of pressure detection with high gauge factor, which is closely dependent on the mechanical and electrical properties and determined by the fabrication process, is still demanded. Here, γ-ray irradiation reduced GS is reported to possess a gauge factor of 1.03 kPa^–1 with pressure detection limit of 10 Pa and high stress retention of 76% after 800 cycles of compressing/relaxation at strain of 50%. Compared with the carbon nanotube(CNT) reinforced GS, the improved lower limit of pressure detection and gauge factor of the GS prepared by γ-ray irradiation is due to the low compression stress(0.9 kPa at stain of 50%). These excellent physical properties of the GS are ascribed to the mild,residual free, and controllable reduction process offered by γ-ray irradiation. 展开更多
关键词 graphene sponge piezoresistive pressure sensor γ-ray irradiation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部