A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incor...A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).展开更多
The mechanical and tribological properties of hot-pressed copper-based composites containing different amounts of graphene nanosheets(GNSs) are compared with those of copper-graphite(Gr) composites fabricated by t...The mechanical and tribological properties of hot-pressed copper-based composites containing different amounts of graphene nanosheets(GNSs) are compared with those of copper-graphite(Gr) composites fabricated by the same method.The results show that the Cu-GNSs composites exhibit higher relative density,microhardness and bending strength compared with Cu-Gr composites with the same volume fraction of GNSs and Gr.Moreover,the friction coefficients and wear rates reduce significantly by the addition of GNSs,whereas the limited impact on reducing friction and wear is found on graphite.The abrasive and delamination wear are the dominant wear mechanisms of the composites.It is believed that the superior mechanical and tribological performances of Cu-GNSs composites are attributed to the unique strengthening effect as well as the higher lubricating efficiency of graphene nanosheets compared with those of graphite,which demonstrates that GNS is an ideal filler for copper matrix composites,acting as not only an impactful lubricant but also a favorable reinforcement.展开更多
We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dis...We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant. The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible specific capacity of 546 (mA-h)/g which is 45 higher than the theoretical value of commercial graphite anode.展开更多
A comparative study on the surface properties of Al-SiC-multi walled carbon nanotubes (CNT) and Al-SiC-graphene nanoplatelets (GNP) hybrid composites fabricated via friction stir processing (FSP) was documented. Micro...A comparative study on the surface properties of Al-SiC-multi walled carbon nanotubes (CNT) and Al-SiC-graphene nanoplatelets (GNP) hybrid composites fabricated via friction stir processing (FSP) was documented. Microstructural characterization reveals a more homogeneous dispersion of GNPs in the Al matrix as compared to CNTs. Dislocation blockade by SiC and GNP particles along with the defect-free interface between the matrix and reinforcements is also observed. Nanoindentation study reveals a remarkable ~207% and ~27% increment in surface nano-hardness of Al-SiC-GNP and Al-SiC-CNT hybrid composite compared to as-received Al6061 alloy, respectively. On the other hand, the microhardness values of Al-SiC-GNP and Al-SiC-CNT are increased by ~36% and ~17% relative to as-received Al6061 alloy, respectively. Tribological assessment reveals ~56% decrease in the specific wear rate of Al-SiC-GNP hybrid composite, whereas it is increased by ~122% in Al-SiC-CNT composite. The higher strength of Al-SiC-GNP composite is attributed to the mechanical exfoliation of GNPs to few layered graphene (FLG) in the presence of SiC. Also, various mechanisms such as thermal mismatch, grain refinement, and Orowan looping contribute significantly towards the strengthening of composites. Moreover, the formation of tribolayer by the squeezed-out GNP on the surface is responsible for the improved tribological performance of the composites. Raman spectroscopy and various other characterization methods corroborate the results.展开更多
文摘A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).
文摘The mechanical and tribological properties of hot-pressed copper-based composites containing different amounts of graphene nanosheets(GNSs) are compared with those of copper-graphite(Gr) composites fabricated by the same method.The results show that the Cu-GNSs composites exhibit higher relative density,microhardness and bending strength compared with Cu-Gr composites with the same volume fraction of GNSs and Gr.Moreover,the friction coefficients and wear rates reduce significantly by the addition of GNSs,whereas the limited impact on reducing friction and wear is found on graphite.The abrasive and delamination wear are the dominant wear mechanisms of the composites.It is believed that the superior mechanical and tribological performances of Cu-GNSs composites are attributed to the unique strengthening effect as well as the higher lubricating efficiency of graphene nanosheets compared with those of graphite,which demonstrates that GNS is an ideal filler for copper matrix composites,acting as not only an impactful lubricant but also a favorable reinforcement.
基金This work was supported by the National Natural Science Foundation of China (No.21373197), the 100 Talents Program of the Chinese Academy of Sciences, USTC Startup and the Fundamental Research Funds for the Central Universities (WK2060140018).
文摘We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant. The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible specific capacity of 546 (mA-h)/g which is 45 higher than the theoretical value of commercial graphite anode.
文摘A comparative study on the surface properties of Al-SiC-multi walled carbon nanotubes (CNT) and Al-SiC-graphene nanoplatelets (GNP) hybrid composites fabricated via friction stir processing (FSP) was documented. Microstructural characterization reveals a more homogeneous dispersion of GNPs in the Al matrix as compared to CNTs. Dislocation blockade by SiC and GNP particles along with the defect-free interface between the matrix and reinforcements is also observed. Nanoindentation study reveals a remarkable ~207% and ~27% increment in surface nano-hardness of Al-SiC-GNP and Al-SiC-CNT hybrid composite compared to as-received Al6061 alloy, respectively. On the other hand, the microhardness values of Al-SiC-GNP and Al-SiC-CNT are increased by ~36% and ~17% relative to as-received Al6061 alloy, respectively. Tribological assessment reveals ~56% decrease in the specific wear rate of Al-SiC-GNP hybrid composite, whereas it is increased by ~122% in Al-SiC-CNT composite. The higher strength of Al-SiC-GNP composite is attributed to the mechanical exfoliation of GNPs to few layered graphene (FLG) in the presence of SiC. Also, various mechanisms such as thermal mismatch, grain refinement, and Orowan looping contribute significantly towards the strengthening of composites. Moreover, the formation of tribolayer by the squeezed-out GNP on the surface is responsible for the improved tribological performance of the composites. Raman spectroscopy and various other characterization methods corroborate the results.