A facile ultrasonic method was used to synthesize CoO/graphene nanohybrids by employing Co4(CO)12 as a cobalt precursor. The nanohybrids were characterized by SEM, TEM and XPS, and the results show that CoO nanopart...A facile ultrasonic method was used to synthesize CoO/graphene nanohybrids by employing Co4(CO)12 as a cobalt precursor. The nanohybrids were characterized by SEM, TEM and XPS, and the results show that CoO nanoparticles (3-5 nm) distribute uniformly on the surface of graphene. The CoO/graphene nanohybrids display high performance as an anode material for lithium-ion battery, such as high reversible lithium storage capacity (650 mA-h/g after 50 cycles, almost twice that of commercial graphite anode), high coulombic efficiency (over 95%) and excellent cycling stability. The extraordinary performance arises from the structure of the nanohybrids: the nanosized CoO particles with high dispersity on conductive graphene substrates are beneficial for lithium-ion insertion/extraction, shortening diffusion length for lithium ions and improving conductivity, thus the lithium storage performance was improved.展开更多
The electromagnetically induced reflection(EIR)effect of graphene metamaterials has been investigated by finite difference time domain(FDTD)method.In this study,a metamaterial sandwich structure composed of silica(SiO...The electromagnetically induced reflection(EIR)effect of graphene metamaterials has been investigated by finite difference time domain(FDTD)method.In this study,a metamaterial sandwich structure composed of silica(SiO2),gold and graphene on terahertz band is designed.By changing the width of the two ribbons of graphene length and the incident angle of electromagnetic wave,the EIR effect of the structure is discussed,and it can be found that SiO2 is a kind of excellent dielectric material.The simulation results show that graphene metamaterial is not sensitive to polarized incident electromagnetic wave.Therefore,such EIR phenomena as insensitive polarization and large incident angle can be applied to optical communication filters and terahertz devices.展开更多
基金Project (4340142501) supported by Start-up Funds of Chair Professor, Tongji University, ChinaProject (51173135) supported by the National Natural Science Foundation of China
文摘A facile ultrasonic method was used to synthesize CoO/graphene nanohybrids by employing Co4(CO)12 as a cobalt precursor. The nanohybrids were characterized by SEM, TEM and XPS, and the results show that CoO nanoparticles (3-5 nm) distribute uniformly on the surface of graphene. The CoO/graphene nanohybrids display high performance as an anode material for lithium-ion battery, such as high reversible lithium storage capacity (650 mA-h/g after 50 cycles, almost twice that of commercial graphite anode), high coulombic efficiency (over 95%) and excellent cycling stability. The extraordinary performance arises from the structure of the nanohybrids: the nanosized CoO particles with high dispersity on conductive graphene substrates are beneficial for lithium-ion insertion/extraction, shortening diffusion length for lithium ions and improving conductivity, thus the lithium storage performance was improved.
基金Research Project of Anhui Province Education Department(No.KJ2020A0684)Innovation and Entrepreneurship Training Program for College Students(Nos.S201910375072,201910375050,201910375052,202010375030)。
文摘The electromagnetically induced reflection(EIR)effect of graphene metamaterials has been investigated by finite difference time domain(FDTD)method.In this study,a metamaterial sandwich structure composed of silica(SiO2),gold and graphene on terahertz band is designed.By changing the width of the two ribbons of graphene length and the incident angle of electromagnetic wave,the EIR effect of the structure is discussed,and it can be found that SiO2 is a kind of excellent dielectric material.The simulation results show that graphene metamaterial is not sensitive to polarized incident electromagnetic wave.Therefore,such EIR phenomena as insensitive polarization and large incident angle can be applied to optical communication filters and terahertz devices.