Besides carbon solubility, the carbide formation possibility is another important factor to differentiate various substrate materials in graphene growth. A recent experiment indicates that the formation of transition ...Besides carbon solubility, the carbide formation possibility is another important factor to differentiate various substrate materials in graphene growth. A recent experiment indicates that the formation of transition metal carbides (TMCs) can suppress carbon precipitation. In this study, Mo2C, a representative of TMCs, is used to study the effects of carbide formation in graphene growth from first principles. Carbon diffusion in Mo2C bulk turns out to be very difficult and it becomes much easier on the Mo2C(001) surface. Therefore, carbon precipitation suppression and graphene growth can be realized simultaneously. A direction depended diffusion behavior is observed on the Mo2C(101) surface, which makes it less favorable for graphene growth compared to the (001) surface.展开更多
Graphene under high temperature was prepared and loaded on Ni foam.Then,cobalt tetroxide precursor was grown on Ni foam in situ by the hydrothermal method.Finally,the sample was burned at high temperature to obtain Co...Graphene under high temperature was prepared and loaded on Ni foam.Then,cobalt tetroxide precursor was grown on Ni foam in situ by the hydrothermal method.Finally,the sample was burned at high temperature to obtain Co_(3)O_(4)+graphene@Ni.The hydrothermal method used in this paper is easy to operate,with low-risk factors and environmental protection.The prepared Co_(3)O_(4)+graphene@Ni electrode exhibits superior electrochemical performance than Co_(3)O_(4)@Ni electrode.At a current density of 1 A/g,the specific capacitance of the Co_(3)O_(4)+graphene@Ni electrode calculated by a charge-discharge test is 935 F/g,which is much larger than that of Co_(3)O_(4)@Ni electrode of 340 F/g.展开更多
A general, simple and economic synthetic method for synthesizing carbon nanofibers was presented. In the method, ethanol was employed as carbon source; metal salts such as nickel nitrate, ferric nitrate and ferric chl...A general, simple and economic synthetic method for synthesizing carbon nanofibers was presented. In the method, ethanol was employed as carbon source; metal salts such as nickel nitrate, ferric nitrate and ferric chloride were used as catalyst precursor respectively; copper plate was employed as the support material. A lot of products were obtained by catalytic combustion deposition of ethanol vapor. Then the as-prepared carbon nanofibers were characterized by field-emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, energy dispersion X-ray spectroscopy and selected-area electron diffractometry. By analyzing the results of characterization, the conclusions are as follows: 1) the large catalyst particles tend to form large-diameter CNFs, small catalyst particles are inclinable to form small-diameter CNFs; 2) the morphology of the catalyst can affect the final morphology of the CNFs. Moreover, the possible growth mechanisms were proposed and the degree of graphitization of samples was estimated by Raman spectroscopy characterization.展开更多
The growth of graphene on oriented (111) copper films has been achieved by atmospheric pressure chemical vapor deposition. The structural properties of as-produced graphene have been investigated by scanning tunneli...The growth of graphene on oriented (111) copper films has been achieved by atmospheric pressure chemical vapor deposition. The structural properties of as-produced graphene have been investigated by scanning tunneling microscopy. Anomalous moir6 superstructures composed of well-defined linear periodic modulations have been observed. We report here on comprehensive and detailed studies of these particular moir6 patterns present in the graphene topography revealing that, in certain conditions, the growth can occur on the oxygen-induced reconstructed copper surface and not directly on the oriented (111) copper film as expected.展开更多
When two-dimensional graphene is exfoliated from three-dimensional highly oriented pyrolytic graphite (HOPG), ripples or corrugations always exist due to the intrinsic thermal fluctuations. Surface-grown graphenes a...When two-dimensional graphene is exfoliated from three-dimensional highly oriented pyrolytic graphite (HOPG), ripples or corrugations always exist due to the intrinsic thermal fluctuations. Surface-grown graphenes also exhibit wrinkles, which are larger in dimension and are thought to be caused by the difference in thermal expansion coefficients between graphene and the underlying substrate in the cooling process after high temperature growth. For further characterization and applications, it is necessary to transfer the surface-grown graphenes onto dielectric substrates, and other wrinkles are generated during this process. Here, we focus on the wrinkles of transferred graphene and demonstrate that the surface morphology of the growth substrate is the origin of the new wrinkles which arise in the surface-to-surface transfer process; we call these morphology- induced wrinkles. Based on a careful statistical analysis of thousands of atomic force microscopy (AFM) topographic data, we have concluded that these wrinkles on transferred few-layer graphene (typically 1-3 layers) are determined by both the growth substrate morphology and the transfer process. Depending on the transfer medium and conditions, most of the wrinkles can be either released or preserved. Our work suggests a new route for graphene engineering involving structuring the growth substrate and tailoring the transfer process.展开更多
The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic ...The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic defects are unavoidably formed along the Cu grain boundaries, degrading the electrical properties of graphene and increasing the device-to-device variability. Here, we introduce a method of hot-pressing as a surface pre-treatment to improve the thermal stability of Cu thin film for the suppression of grain boundary grooving. The flattened Cu thin film maintains its smooth surface even after the subsequent high temperature CVD process necessary for graphene growth, and the formation of graphene without wrinkles is realized. Graphene field effect transistors (FETs) fabricated using the graphene synthesized on hot-pressed Cu thin film exhibit superior field effect mobility and significantly reduced device-to-device variation.展开更多
Significant changes in the Raman spectrum of single-layer graphene grown on a copper film were observed after the spontaneous oxidation of the underlying substrate that occurred under ambient conditions. The frequenci...Significant changes in the Raman spectrum of single-layer graphene grown on a copper film were observed after the spontaneous oxidation of the underlying substrate that occurred under ambient conditions. The frequencies of the graphene G and 2D Raman modes were found to undergo red shifts, while the intensities of the two bands change by more than an order of magnitude. To understand the origin of these effects, we further characterized the samples by scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and atomic force microscopy (AFM). The oxidation of the substrate produced an appreciable corrugation in the substrate without disrupting the crystalline order of the graphene overlayer and/or changing the carrier doping level. We explain the red shifts of the Raman frequencies in terms of tensile strain induced by corrugation of the graphene layer. The changes in Raman intensity with oxidation arise from the influence of the thin cuprous oxide film on the efficiency of light coupling with the graphene layer in the Raman scattering process.展开更多
A foundation of the modern technology that uses single-crystal silicon has been the growth of highquality single-crystal Si ingots with diameters up to 12 inches or larger. For many applications of graphene, large-are...A foundation of the modern technology that uses single-crystal silicon has been the growth of highquality single-crystal Si ingots with diameters up to 12 inches or larger. For many applications of graphene, large-area high-quality(ideally of single-crystal) material will be enabling. Since the first growth on copper foil a decade ago, inch-sized single-crystal graphene has been achieved. We present here the growth, in 20 min, of a graphene film of(5 ×50) cm^2 dimension with >99% ultra-highly oriented grains.This growth was achieved by:(1) synthesis of metre-sized single-crystal Cu(1 1 1) foil as substrate;(2)epitaxial growth of graphene islands on the Cu(1 1 1) surface;(3) seamless merging of such graphene islands into a graphene film with high single crystallinity and(4) the ultrafast growth of graphene film.These achievements were realized by a temperature-gradient-driven annealing technique to produce single-crystal Cu(1 1 1) from industrial polycrystalline Cu foil and the marvellous effects of a continuous oxygen supply from an adjacent oxide. The as-synthesized graphene film, with very few misoriented grains(if any), has a mobility up to ~23,000 cm^2 V^(-1)s^(-1)at 4 K and room temperature sheet resistance of ~230 Ω/□. It is very likely that this approach can be scaled up to achieve exceptionally large and high-quality graphene films with single crystallinity, and thus realize various industrial-level applications at a low cost.展开更多
Previous reports about the growth of large graphene single crystals on polycrystalline metal substrates usually adopted the strategy of suppressing the nucleation by lowering the concentration of the feedstock, which ...Previous reports about the growth of large graphene single crystals on polycrystalline metal substrates usually adopted the strategy of suppressing the nucleation by lowering the concentration of the feedstock, which greatly limited the rate of the nucleation and the sequent growth. The emerging liquid metal catalyst possesses the characteristic of quasi-atomically smooth surface with high diffusion rate. In principle, it should be a naturally ideal platform for the lowdensity nucleation and the fast growth of graphene. However,the rapid growth of large graphene single crystals on liquid metals has not received the due attention. In this paper, we firstly purposed the insight into the rapid growth of large graphene single crystals on liquid metals. We obtained the millimeter-size graphene single crystals on liquid Cu. The rich free-electrons in liquid Cu accelerate the nucleation, and the isotropic smooth surface greatly suppresses the nucleation.Moreover, the fast mass-transfer of carbon atoms due to the excellent fluidity of liquid Cu promotes the fast growth with a rate up to 79 μm s^-1. We hope the research on the growth speed of graphene on liquid Cu can enrich the recognition of the growth behavior of two-dimensional(2 D) materials on the liquid metal. We also believe that the liquid metal strategy for the rapid growth of graphene can be extended to various 2 D materials and thus promote their future applications in the photonics and electronics.展开更多
基金Natural Science Foundation of China(51402120,11974127)Natural Science Foundation of Anhui Higher Education Institutions of China(KJ2014A222,KJ2019ZD40)。
文摘Besides carbon solubility, the carbide formation possibility is another important factor to differentiate various substrate materials in graphene growth. A recent experiment indicates that the formation of transition metal carbides (TMCs) can suppress carbon precipitation. In this study, Mo2C, a representative of TMCs, is used to study the effects of carbide formation in graphene growth from first principles. Carbon diffusion in Mo2C bulk turns out to be very difficult and it becomes much easier on the Mo2C(001) surface. Therefore, carbon precipitation suppression and graphene growth can be realized simultaneously. A direction depended diffusion behavior is observed on the Mo2C(101) surface, which makes it less favorable for graphene growth compared to the (001) surface.
基金Project(21502014)supported by the National Natural Science Foundation of ChinaProjects(20180550736,2019-ZD 0117)supported by the Natural Science Foundation of Liaoning Province,China+1 种基金Projects(JDL 2019004,JDL 2017027)supported by the Research Foundation of Educational Committee of Liaoning Province,ChinaProject(191008-K)supported by Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology),China。
文摘Graphene under high temperature was prepared and loaded on Ni foam.Then,cobalt tetroxide precursor was grown on Ni foam in situ by the hydrothermal method.Finally,the sample was burned at high temperature to obtain Co_(3)O_(4)+graphene@Ni.The hydrothermal method used in this paper is easy to operate,with low-risk factors and environmental protection.The prepared Co_(3)O_(4)+graphene@Ni electrode exhibits superior electrochemical performance than Co_(3)O_(4)@Ni electrode.At a current density of 1 A/g,the specific capacitance of the Co_(3)O_(4)+graphene@Ni electrode calculated by a charge-discharge test is 935 F/g,which is much larger than that of Co_(3)O_(4)@Ni electrode of 340 F/g.
基金Project(66167044) supported by the Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing, ChinaProject(66062021) supported by the Science and Technology Activity for Chinese Homecoming Fellow Abroad, Program of Beijing Key Laboratory for Sensor
文摘A general, simple and economic synthetic method for synthesizing carbon nanofibers was presented. In the method, ethanol was employed as carbon source; metal salts such as nickel nitrate, ferric nitrate and ferric chloride were used as catalyst precursor respectively; copper plate was employed as the support material. A lot of products were obtained by catalytic combustion deposition of ethanol vapor. Then the as-prepared carbon nanofibers were characterized by field-emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, energy dispersion X-ray spectroscopy and selected-area electron diffractometry. By analyzing the results of characterization, the conclusions are as follows: 1) the large catalyst particles tend to form large-diameter CNFs, small catalyst particles are inclinable to form small-diameter CNFs; 2) the morphology of the catalyst can affect the final morphology of the CNFs. Moreover, the possible growth mechanisms were proposed and the degree of graphitization of samples was estimated by Raman spectroscopy characterization.
文摘The growth of graphene on oriented (111) copper films has been achieved by atmospheric pressure chemical vapor deposition. The structural properties of as-produced graphene have been investigated by scanning tunneling microscopy. Anomalous moir6 superstructures composed of well-defined linear periodic modulations have been observed. We report here on comprehensive and detailed studies of these particular moir6 patterns present in the graphene topography revealing that, in certain conditions, the growth can occur on the oxygen-induced reconstructed copper surface and not directly on the oriented (111) copper film as expected.
基金The research was supported by the Natural Science Foundation of China (Grants Nos. 51072004, 50802003, 20973013, and 50821061) and the Ministry of Science and Technology of China (Grants Nos. 2007CB936203, 2009CB29403, 2011CB933003, and 2011CB921903).
文摘When two-dimensional graphene is exfoliated from three-dimensional highly oriented pyrolytic graphite (HOPG), ripples or corrugations always exist due to the intrinsic thermal fluctuations. Surface-grown graphenes also exhibit wrinkles, which are larger in dimension and are thought to be caused by the difference in thermal expansion coefficients between graphene and the underlying substrate in the cooling process after high temperature growth. For further characterization and applications, it is necessary to transfer the surface-grown graphenes onto dielectric substrates, and other wrinkles are generated during this process. Here, we focus on the wrinkles of transferred graphene and demonstrate that the surface morphology of the growth substrate is the origin of the new wrinkles which arise in the surface-to-surface transfer process; we call these morphology- induced wrinkles. Based on a careful statistical analysis of thousands of atomic force microscopy (AFM) topographic data, we have concluded that these wrinkles on transferred few-layer graphene (typically 1-3 layers) are determined by both the growth substrate morphology and the transfer process. Depending on the transfer medium and conditions, most of the wrinkles can be either released or preserved. Our work suggests a new route for graphene engineering involving structuring the growth substrate and tailoring the transfer process.
文摘The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic defects are unavoidably formed along the Cu grain boundaries, degrading the electrical properties of graphene and increasing the device-to-device variability. Here, we introduce a method of hot-pressing as a surface pre-treatment to improve the thermal stability of Cu thin film for the suppression of grain boundary grooving. The flattened Cu thin film maintains its smooth surface even after the subsequent high temperature CVD process necessary for graphene growth, and the formation of graphene without wrinkles is realized. Graphene field effect transistors (FETs) fabricated using the graphene synthesized on hot-pressed Cu thin film exhibit superior field effect mobility and significantly reduced device-to-device variation.
文摘Significant changes in the Raman spectrum of single-layer graphene grown on a copper film were observed after the spontaneous oxidation of the underlying substrate that occurred under ambient conditions. The frequencies of the graphene G and 2D Raman modes were found to undergo red shifts, while the intensities of the two bands change by more than an order of magnitude. To understand the origin of these effects, we further characterized the samples by scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and atomic force microscopy (AFM). The oxidation of the substrate produced an appreciable corrugation in the substrate without disrupting the crystalline order of the graphene overlayer and/or changing the carrier doping level. We explain the red shifts of the Raman frequencies in terms of tensile strain induced by corrugation of the graphene layer. The changes in Raman intensity with oxidation arise from the influence of the thin cuprous oxide film on the efficiency of light coupling with the graphene layer in the Raman scattering process.
基金supported by National Key R&D Program of China (2016YFA0300903, 2016YFA0300802, 2014CB932500 and 2016YFA0200101)National Natural Science Foundation of China (51522201, 11474006, 11327902, 11234001, 21525310, 91433102 and 21573186)+1 种基金Postdoctoral Innovative Personnel Support Program (BX201700014)National Program for Thousand Young Talents of China and the Institute for Basic Science (IBS-R019-D1) of Korea
文摘A foundation of the modern technology that uses single-crystal silicon has been the growth of highquality single-crystal Si ingots with diameters up to 12 inches or larger. For many applications of graphene, large-area high-quality(ideally of single-crystal) material will be enabling. Since the first growth on copper foil a decade ago, inch-sized single-crystal graphene has been achieved. We present here the growth, in 20 min, of a graphene film of(5 ×50) cm^2 dimension with >99% ultra-highly oriented grains.This growth was achieved by:(1) synthesis of metre-sized single-crystal Cu(1 1 1) foil as substrate;(2)epitaxial growth of graphene islands on the Cu(1 1 1) surface;(3) seamless merging of such graphene islands into a graphene film with high single crystallinity and(4) the ultrafast growth of graphene film.These achievements were realized by a temperature-gradient-driven annealing technique to produce single-crystal Cu(1 1 1) from industrial polycrystalline Cu foil and the marvellous effects of a continuous oxygen supply from an adjacent oxide. The as-synthesized graphene film, with very few misoriented grains(if any), has a mobility up to ~23,000 cm^2 V^(-1)s^(-1)at 4 K and room temperature sheet resistance of ~230 Ω/□. It is very likely that this approach can be scaled up to achieve exceptionally large and high-quality graphene films with single crystallinity, and thus realize various industrial-level applications at a low cost.
基金supported by the National Natural Science Foundation of China(21673161)the Sino-German Center for Research Promotion(1400)
文摘Previous reports about the growth of large graphene single crystals on polycrystalline metal substrates usually adopted the strategy of suppressing the nucleation by lowering the concentration of the feedstock, which greatly limited the rate of the nucleation and the sequent growth. The emerging liquid metal catalyst possesses the characteristic of quasi-atomically smooth surface with high diffusion rate. In principle, it should be a naturally ideal platform for the lowdensity nucleation and the fast growth of graphene. However,the rapid growth of large graphene single crystals on liquid metals has not received the due attention. In this paper, we firstly purposed the insight into the rapid growth of large graphene single crystals on liquid metals. We obtained the millimeter-size graphene single crystals on liquid Cu. The rich free-electrons in liquid Cu accelerate the nucleation, and the isotropic smooth surface greatly suppresses the nucleation.Moreover, the fast mass-transfer of carbon atoms due to the excellent fluidity of liquid Cu promotes the fast growth with a rate up to 79 μm s^-1. We hope the research on the growth speed of graphene on liquid Cu can enrich the recognition of the growth behavior of two-dimensional(2 D) materials on the liquid metal. We also believe that the liquid metal strategy for the rapid growth of graphene can be extended to various 2 D materials and thus promote their future applications in the photonics and electronics.