The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic ...The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic defects are unavoidably formed along the Cu grain boundaries, degrading the electrical properties of graphene and increasing the device-to-device variability. Here, we introduce a method of hot-pressing as a surface pre-treatment to improve the thermal stability of Cu thin film for the suppression of grain boundary grooving. The flattened Cu thin film maintains its smooth surface even after the subsequent high temperature CVD process necessary for graphene growth, and the formation of graphene without wrinkles is realized. Graphene field effect transistors (FETs) fabricated using the graphene synthesized on hot-pressed Cu thin film exhibit superior field effect mobility and significantly reduced device-to-device variation.展开更多
Cathode samples of nano-diamond by graphitization pretreatment with different temperatures were fabricated by electrophoresis, then the structures and morphologies of the cathode samples were characterized by scanning...Cathode samples of nano-diamond by graphitization pretreatment with different temperatures were fabricated by electrophoresis, then the structures and morphologies of the cathode samples were characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD), and the field emission tests were conducted. The effects of graphitization pretreatment on the field emission characteristics of nano-diamond cathode surface on titanium substrate are studied. The results indicate that the surface morphologies of nano-diamond cathode samples after graphitization pretreatment change a lot, and the field emission characteristics in low-voltage area are improved obviously. However, in high-voltage area, the curve distortion happens, and it doesn't conform the mechanism of field emission characteristics.展开更多
文摘The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic defects are unavoidably formed along the Cu grain boundaries, degrading the electrical properties of graphene and increasing the device-to-device variability. Here, we introduce a method of hot-pressing as a surface pre-treatment to improve the thermal stability of Cu thin film for the suppression of grain boundary grooving. The flattened Cu thin film maintains its smooth surface even after the subsequent high temperature CVD process necessary for graphene growth, and the formation of graphene without wrinkles is realized. Graphene field effect transistors (FETs) fabricated using the graphene synthesized on hot-pressed Cu thin film exhibit superior field effect mobility and significantly reduced device-to-device variation.
基金supported by the PH.D Start-up Foundation of Yan’an University(No.YD 2010-04)the Special Foundation of Yan’an University(No.YDZD 2011-01)+3 种基金the 2014 Education and Innovation Project of Yan’an University for Graduate Studentthe 2014 Local University National Training Project of Innovation and Entrepreneurship for Undergraduates(No.201410719023)the Special Research Funds for Discipline Construction of High Level University Construction(No.2015SXTS02)the Natural Science Foundation of Shaanxi Province(No.2014JM2-5058)
文摘Cathode samples of nano-diamond by graphitization pretreatment with different temperatures were fabricated by electrophoresis, then the structures and morphologies of the cathode samples were characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD), and the field emission tests were conducted. The effects of graphitization pretreatment on the field emission characteristics of nano-diamond cathode surface on titanium substrate are studied. The results indicate that the surface morphologies of nano-diamond cathode samples after graphitization pretreatment change a lot, and the field emission characteristics in low-voltage area are improved obviously. However, in high-voltage area, the curve distortion happens, and it doesn't conform the mechanism of field emission characteristics.