The ever-growing market demands for lithium ion batteries have stimulated numerous research efforts aiming at the exploration of novel electrode materials with higher capacity and long-term cycling stability.Two-dimen...The ever-growing market demands for lithium ion batteries have stimulated numerous research efforts aiming at the exploration of novel electrode materials with higher capacity and long-term cycling stability.Two-dimensional (2D)nanomaterials and their heterostructures are an intense area of study and promise great potential in electrochemical lithium storage owing to their unique properties that result from structural planar confinement.Here we report a microwave chemistry strategy to integrate ultrathin SnO2 nanosheets into graphene layer to construct surface-to-surface 2D heterostructured architectures,which can provide unique structural planar confinement for highly reversible electrochemical lithium storage.The as-synthesized 2D SnO2/graphene heterostructures can exhibit high reversible capacity of 688.5mAh g^-1 over 500cycles with excellent long-term cycling stability and good rate capability when used as anode materials for lithium ion batteries.The present work definitely reveals the advantages of 2D heterostructures featured with a surface-to-surface stack between two different nanosheets in energy storage and conversion devices.展开更多
Two-dimensional(2D)materials possess unique thickness-and lateral-size-dependent properties.Many efforts have been devoted to obtaining 2D materials with narrow structure heterogeneity while it is still challenging to...Two-dimensional(2D)materials possess unique thickness-and lateral-size-dependent properties.Many efforts have been devoted to obtaining 2D materials with narrow structure heterogeneity while it is still challenging to independently control their thickness and lateral size,limiting their widespread applications.Here,we develop a three-step method which achieves independent thickness and lateral size sorting of 2D materials.Taking 2D h-BN flakes as an example,their thickness and lateral size are independently sorted to different fractions with thicknesses smaller than 6 nm.In addition,the 2D h-BN flakes possess narrow distributions of both thickness and lateral size.We further develop a force field extraction method and achieve scalable size sorting of 2D h-BN,which is universal for sorting other 2D materials including MoS2 and graphene oxide.This work reports an effective method to produce structure homogenous 2D materials and will help fundamental studies and applications of 2D materials where thickness and lateral size are of concern.展开更多
Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent the...Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent thermal and mechanical stability, outstanding electronic properties, and tunable porosity, allow the anchoring and dispersion of the active metals. Therefore, currently they are used as the key support material in many catalytic processes. This review summarizes recent relevant applications in supported catalysts that use graphitized nanocarbon as supports for catalytic oxidation, hydrogenation, dehydrogenation, and C-C coupling reactions in liquid-phase and gas-solid phase-reaction systems. The latest developments in specific features derived from the morphology and characteristics of graphitized na- nocarbon-supported metal catalysts are highlighted, as well as the differences in the catalytic behavior of graphitized nano- carbon-supported metal catalysts versus other related cata- lysts. The scientific challenges and opportunities in this field are also discussed.展开更多
基金supported by China Ministry of Science and Technology under Contract of 2016YFA(0202801)the National Natural Science Foundation of China(21521091,21390393,U1463202,21471089,21671117,21703219 and 21371023)China Postdoctoral Science Foundation(2017M620738)
文摘The ever-growing market demands for lithium ion batteries have stimulated numerous research efforts aiming at the exploration of novel electrode materials with higher capacity and long-term cycling stability.Two-dimensional (2D)nanomaterials and their heterostructures are an intense area of study and promise great potential in electrochemical lithium storage owing to their unique properties that result from structural planar confinement.Here we report a microwave chemistry strategy to integrate ultrathin SnO2 nanosheets into graphene layer to construct surface-to-surface 2D heterostructured architectures,which can provide unique structural planar confinement for highly reversible electrochemical lithium storage.The as-synthesized 2D SnO2/graphene heterostructures can exhibit high reversible capacity of 688.5mAh g^-1 over 500cycles with excellent long-term cycling stability and good rate capability when used as anode materials for lithium ion batteries.The present work definitely reveals the advantages of 2D heterostructures featured with a surface-to-surface stack between two different nanosheets in energy storage and conversion devices.
基金the National Natural Science Foundation of China(51920105002,51991340,and 51991343)Guangdong Innovative and Entrepreneurial Research Team Program(2017ZT07C341)+2 种基金the Bureau of Industry and Information Technology of Shenzhen for the“2017 Graphene Manufacturing Innovation Center Project”(201901171523)Shenzhen Basic Research Project(JCYJ20190809180605522,JCYJ20200109144620815 and JCYJ20200109144616617)China Postdoctoral Science Foundation(2020M680540)。
文摘Two-dimensional(2D)materials possess unique thickness-and lateral-size-dependent properties.Many efforts have been devoted to obtaining 2D materials with narrow structure heterogeneity while it is still challenging to independently control their thickness and lateral size,limiting their widespread applications.Here,we develop a three-step method which achieves independent thickness and lateral size sorting of 2D materials.Taking 2D h-BN flakes as an example,their thickness and lateral size are independently sorted to different fractions with thicknesses smaller than 6 nm.In addition,the 2D h-BN flakes possess narrow distributions of both thickness and lateral size.We further develop a force field extraction method and achieve scalable size sorting of 2D h-BN,which is universal for sorting other 2D materials including MoS2 and graphene oxide.This work reports an effective method to produce structure homogenous 2D materials and will help fundamental studies and applications of 2D materials where thickness and lateral size are of concern.
基金supported by the Ministry of Science and Technology (2016YFA0204100)the National Natural Science Foundation of China (21573254 and 91545110)+1 种基金the Youth Innovation Promotion Association (CAS)the Sinopec China and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09030103)
文摘Graphitized nanocarbon materials can be an ideal catalyst support for heterogeneous catalytic systems. Their unique physical and chemical properties, such as large surface area, high adsorption capacity, excellent thermal and mechanical stability, outstanding electronic properties, and tunable porosity, allow the anchoring and dispersion of the active metals. Therefore, currently they are used as the key support material in many catalytic processes. This review summarizes recent relevant applications in supported catalysts that use graphitized nanocarbon as supports for catalytic oxidation, hydrogenation, dehydrogenation, and C-C coupling reactions in liquid-phase and gas-solid phase-reaction systems. The latest developments in specific features derived from the morphology and characteristics of graphitized na- nocarbon-supported metal catalysts are highlighted, as well as the differences in the catalytic behavior of graphitized nano- carbon-supported metal catalysts versus other related cata- lysts. The scientific challenges and opportunities in this field are also discussed.