The kinetics of potassium intercalating into graphite in molten KF at 1 163 K was investigated by means of cyclic voltammetry and chronoamperometry.Cyclic voltammetry results indicate that intercalaltion/deintercalati...The kinetics of potassium intercalating into graphite in molten KF at 1 163 K was investigated by means of cyclic voltammetry and chronoamperometry.Cyclic voltammetry results indicate that intercalaltion/deintercalation of potassium into/from graphite involve kinetic limitations.The intercalation process of potassium was further confirmed to be governed by both the diffusion of potassium ion in graphite bulk and the phase transition kinetics through the analyses of current-time transient curves with reversible and quasi-reversible equations.The transfer coefficient of the intercalation reaction was calculated to be 0.364 according to the parameters resulting from nonlinear fitting of the current-time transient curves with a quasi-reversible equation.Analysis with scanning electron microscope shows that graphite matrix was severely eroded by intercalation of potassium.展开更多
Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reaction...Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reactions on the aggressively reactive surface is inevitable given the scarcity of effective protecting layers.Herein,by introducing a flame-retardant localized high-concentration electrolyte with retentive solvation configuration and relatively weakened anion-coordination and non-solvating fluorinated ether,the rational solid electrolyte interphase characterized by well-balanced inorganic/organic components is tailored in situ.This effectively prevented solvents from excessively decomposing and simultaneously improved the resistance against K-ion transport.Consequently,the graphite anode retained a prolonged cycling capability of up to 1400 cycles(245 mA h g,remaining above 12 mon)with an excellent capacity retention of as high as 92.4%.This is superior to those of conventional and high-concentration electrolytes.Thus,the optimized electrolyte with moderate salt concentration is perfectly compatible with graphite,providing a potential application prospect for K-storage evolution.展开更多
基金Project(1343-74236000004)supported by the Hunan Province Innovation Foundation for Postgraduate
文摘The kinetics of potassium intercalating into graphite in molten KF at 1 163 K was investigated by means of cyclic voltammetry and chronoamperometry.Cyclic voltammetry results indicate that intercalaltion/deintercalation of potassium into/from graphite involve kinetic limitations.The intercalation process of potassium was further confirmed to be governed by both the diffusion of potassium ion in graphite bulk and the phase transition kinetics through the analyses of current-time transient curves with reversible and quasi-reversible equations.The transfer coefficient of the intercalation reaction was calculated to be 0.364 according to the parameters resulting from nonlinear fitting of the current-time transient curves with a quasi-reversible equation.Analysis with scanning electron microscope shows that graphite matrix was severely eroded by intercalation of potassium.
基金supported by the National Natural Science Foundation of China(91963118 and 52173246)Science Technology Program of Jilin Province(20200201066JC)the 111 Project(B13013)。
文摘Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reactions on the aggressively reactive surface is inevitable given the scarcity of effective protecting layers.Herein,by introducing a flame-retardant localized high-concentration electrolyte with retentive solvation configuration and relatively weakened anion-coordination and non-solvating fluorinated ether,the rational solid electrolyte interphase characterized by well-balanced inorganic/organic components is tailored in situ.This effectively prevented solvents from excessively decomposing and simultaneously improved the resistance against K-ion transport.Consequently,the graphite anode retained a prolonged cycling capability of up to 1400 cycles(245 mA h g,remaining above 12 mon)with an excellent capacity retention of as high as 92.4%.This is superior to those of conventional and high-concentration electrolytes.Thus,the optimized electrolyte with moderate salt concentration is perfectly compatible with graphite,providing a potential application prospect for K-storage evolution.