The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The result...The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of graphene obviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding a single graphene sheet. From the simulation, we also find that the Young's modulus and tensile strength of the Ni-coated graphene/Al composite is obviously larger than those of the uncoated graphene/Al composite. The increased magnitude of the Young's modulus and tensile strength of graphene/Al composite are 52.27% and 32.32% at 0.01 K, respectively, due to Ni coating. By exploring the effects of temperature on the mechanical properties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength.展开更多
5.0 vol.% graphene nanoplatelets(GNPs) and aluminum powders were mixed to prepare GNPs/Al composites via high-energy ball milling(HEBM). The mixed powders were subjected to spark plasma sintering(SPS) and subsequent h...5.0 vol.% graphene nanoplatelets(GNPs) and aluminum powders were mixed to prepare GNPs/Al composites via high-energy ball milling(HEBM). The mixed powders were subjected to spark plasma sintering(SPS) and subsequent hot extrusion. The microstructure and mechanical properties of extruded composites were investigated by X-ray photoelectron spectroscopy(XPS), transmission electron microscopy(TEM) and tensile tests. In the extruded composites, 5.0 vol.% GNPs were dispersed homogeneously and no serious GNP-Al interfacial reaction occurred. As a result, the yield strength and ultimate tensile strength of the extruded GNPs/Al composites reached 462 and 479 MPa, which were 62% and 60% higher than those of the extruded Al matrix, respectively. The enhanced mechanical properties were attributed to the effective load transfer capacity of dispersed GNPs. This demonstrated that it may be promising to introduce dispersed high-content GNPs via HEBM, SPS and hot extrusion techniques and GNP-Al interfacial reaction can be controlled.展开更多
Owing to its distinguished mechanical stiffness and strength, graphene has become an ideal reinforcing material in kinds of composite materials. In this work, the graphene(reduced graphene oxide) reinforced aluminum...Owing to its distinguished mechanical stiffness and strength, graphene has become an ideal reinforcing material in kinds of composite materials. In this work, the graphene(reduced graphene oxide) reinforced aluminum(Al)matrix composites were fabricated by flaky powder metallurgy. Tensile tests of pure Al matrix and graphene/Al composites with bioinspired layered structures are conducted.By means of an independently developed Python-based structural modeling program, three-dimensional microscopic structural models of graphene/Al composites can be established, in which the size, shape, orientation, location and content of graphene can be reconstructed in line with the actual graphene/Al composite structures. Elastoplastic mechanical properties, damaged materials behaviors, grapheneAl interfacial behaviors and reasonable boundary conditions are introduced and applied to perform the simulations. Based on the experimental and numerical tensile behaviors of graphene/Al composites, the effects of graphene morphology,graphene-Al interface, composite configuration and failure behavior within the tensile mechanical deformations of graphene/Al composites can be revealed and indicated, respectively.From the analysis above, a good understanding can be brought to light for the deformation mechanism of graphene/Al composites.展开更多
基金Supported by National Natural Science Foundation of China under Grant No.10902083the Natural Science Foundation of Shannxi Province under Grant No.2009GM1007
文摘The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of graphene obviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding a single graphene sheet. From the simulation, we also find that the Young's modulus and tensile strength of the Ni-coated graphene/Al composite is obviously larger than those of the uncoated graphene/Al composite. The increased magnitude of the Young's modulus and tensile strength of graphene/Al composite are 52.27% and 32.32% at 0.01 K, respectively, due to Ni coating. By exploring the effects of temperature on the mechanical properties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength.
基金financial supports from National Key R&D Program of China (2017YFB0703103)Key Area R&D Program of Guangdong Province,China (2019B010942001)。
文摘5.0 vol.% graphene nanoplatelets(GNPs) and aluminum powders were mixed to prepare GNPs/Al composites via high-energy ball milling(HEBM). The mixed powders were subjected to spark plasma sintering(SPS) and subsequent hot extrusion. The microstructure and mechanical properties of extruded composites were investigated by X-ray photoelectron spectroscopy(XPS), transmission electron microscopy(TEM) and tensile tests. In the extruded composites, 5.0 vol.% GNPs were dispersed homogeneously and no serious GNP-Al interfacial reaction occurred. As a result, the yield strength and ultimate tensile strength of the extruded GNPs/Al composites reached 462 and 479 MPa, which were 62% and 60% higher than those of the extruded Al matrix, respectively. The enhanced mechanical properties were attributed to the effective load transfer capacity of dispersed GNPs. This demonstrated that it may be promising to introduce dispersed high-content GNPs via HEBM, SPS and hot extrusion techniques and GNP-Al interfacial reaction can be controlled.
基金financial supports by the National Natural Science Foundation (51501111, 51131004)the Ministry of Science and Technology of China (2016YFE0130200)+1 种基金Science & Technology Committee of Shanghai (14DZ2261200, 1452 0710100 and 14JC14033 00)111 Project (B16032)
文摘Owing to its distinguished mechanical stiffness and strength, graphene has become an ideal reinforcing material in kinds of composite materials. In this work, the graphene(reduced graphene oxide) reinforced aluminum(Al)matrix composites were fabricated by flaky powder metallurgy. Tensile tests of pure Al matrix and graphene/Al composites with bioinspired layered structures are conducted.By means of an independently developed Python-based structural modeling program, three-dimensional microscopic structural models of graphene/Al composites can be established, in which the size, shape, orientation, location and content of graphene can be reconstructed in line with the actual graphene/Al composite structures. Elastoplastic mechanical properties, damaged materials behaviors, grapheneAl interfacial behaviors and reasonable boundary conditions are introduced and applied to perform the simulations. Based on the experimental and numerical tensile behaviors of graphene/Al composites, the effects of graphene morphology,graphene-Al interface, composite configuration and failure behavior within the tensile mechanical deformations of graphene/Al composites can be revealed and indicated, respectively.From the analysis above, a good understanding can be brought to light for the deformation mechanism of graphene/Al composites.