Nanocrystalline Ni-Fe FCC alloy coatings with Fe content of 1.3%-39%(mass fraction) were fabricated on the nickel substrates using a DC electrodeposition technique. The crystal structure, lattice strain, grain size ...Nanocrystalline Ni-Fe FCC alloy coatings with Fe content of 1.3%-39%(mass fraction) were fabricated on the nickel substrates using a DC electrodeposition technique. The crystal structure, lattice strain, grain size and lattice constant of the Ni-Fe alloy coatings were studied by X-ray diffraction technique. The chemical composition and surface morphology of the FCC Ni-Fe alloy coatings were investigated with the energy dispersive X-ray spectroscopy(EDS) and atomic force microscopy(AFM). The results show that the Fe content of the Ni-Fe alloy coatings has a great influence on the preferred orientation, grain size, lattice constant and lattice strain. FCC Ni-Fe alloy coatings exhibit preferred orientations of(200) or(200)(111). With an increase of Fe content, the preferred growth orientation of(200) plane is weakened gradually, while the preferred growth orientation of(111) increases. An increase of the Fe content in the range of 1.3%-25%(mass fraction) results in a significant grain refinement of the coatings. Increasing the Fe content beyond 25% does not decrease the grain size of FCC Ni-Fe alloys further. The lattice strain increases with increasing the Fe content in the FCC Ni-Fe alloys. Since the alloys with Fe content not less than 25% has similar grain size(~11 nm), the increase in the lattice strain with the increase of Fe content cannot be attributed to the change in the grain size.展开更多
The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stag...The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stage, SO2 can react with product CaO and slow down the CaCO3 decomposition rate by the covering effect of the CaSO4 product. The sulfation rate of simultaneous calcinatiort/sulfation is slower than that of precalcined CaO, but with a long enough sulfation time, the calcium conversion of simultaneous calcination/sulfation is higher than that of the precalcined CaO. A grain-micrograin model is established to describe the simultaneous calcination, sintering and sulfation of limestone. The graln-micrograln model can reflect the true reaction process of the calcination and sulfation of limestone in oxy-fuel fluidized bed combustion.展开更多
A facile and effective method to synthesize TS‐1zeolite aggregates has been presented.The crystallization of silanized seeds and nanocrystallites led to large and irregular TS‐1zeolite aggregates ranging from5to40μ...A facile and effective method to synthesize TS‐1zeolite aggregates has been presented.The crystallization of silanized seeds and nanocrystallites led to large and irregular TS‐1zeolite aggregates ranging from5to40μm in size,based on the special sol‐gel chemistry of bridged organosilane.Epoxidation of1‐hexene and cyclohexene was used as a probe reaction to investigate the catalytic performance of the resulting materials.These TS‐1zeolite aggregates possessed both the conventional nanoparticle properties of TS‐1zeolites and variable surface hydrophilic/hydrophobic features,which enhanced the catalytic properties of hydroperoxides for alkene epoxidation.Moreover,the large aggregates effectively simplified the separation procedure during preparation and catalytic reactions.展开更多
Cation substitution in spinel cobaltites(e.g.,ACo2O4,in which A=Mn,Fe,Co,Ni,Cu,or Zn)is a promising strategy to precisely modulate their electronic structure/properties and thus improve the corresponding electrochemic...Cation substitution in spinel cobaltites(e.g.,ACo2O4,in which A=Mn,Fe,Co,Ni,Cu,or Zn)is a promising strategy to precisely modulate their electronic structure/properties and thus improve the corresponding electrochemical performance for water splitting.However,the fundamental principles and mechanisms are not fully understood.This research aims to systematically investigate the effects of cation substitution in spinel cobaltites derived from mixed-metal-organic frameworks on the oxygen evolution reaction(OER).Among the obtained ACo2O4 catalysts,FeCo2O4 showed excellent OER performance with a current density of 10 mA·cm^-2 at an overpotential of 164 mV in alkaline media.Both theoretical calculations and experimental results demonstrate that the Fe substitution in the crystal lattice of ACo2O4 can significantly accelerate charge transfer,thereby achieving enhanced electrochemical properties.The crystal field of spinel ACo2O4,which determines the valence states of cations A,is identified as the key factor to dictate the OER performance of these spinel cobaltites.展开更多
The determination of the precise thickness-shear frequency of electroded crystal plates has practical importance in quartz crystal resonator design and fabricatiom especially when the high fundamental thickness-shear ...The determination of the precise thickness-shear frequency of electroded crystal plates has practical importance in quartz crystal resonator design and fabricatiom especially when the high fundamental thickness-shear frequency has reduced the crystal plate thickness to such a degree that proper consideration of the effect of electrodes is very important. The electrodes effect as mass loading in the estimation of the resonance frequency has to be modified to consider the stiffness of electrodes, as the relative strength is increasingly noticeable. By following a known procedure in the determination of the thickness-shear frequency of an infinite AT-cut crystal plate, frequency equations of crystal plate without and with piezoelectric effect are obtained in terms of elastic constants and the electrode material density. After solving these equations for the usual design parameters of crystal resonators, the design process can be optimized to pinpoint the precise configuration to avoid time-consuming trial and reduction steps. Since these equations and solutions are presented for widely used materials and parameters, they can be easily integrated into the existing crystal resonator design and manufacturing processes.展开更多
Various conditions were investigated in detail for the novel organic template-free static hydrothermal synthesis of SUZ-4 zeolite in the presence of seeds. The obtained samples were characterized by XRD (X-ray diffra...Various conditions were investigated in detail for the novel organic template-free static hydrothermal synthesis of SUZ-4 zeolite in the presence of seeds. The obtained samples were characterized by XRD (X-ray diffraction), SEM (scanning electron microscope), TG (thermal gravimetric analysis), ICP (inductively coupling plasma) elemental analysis, nitrogen sorption isotherm and surface area. The results show that pure SUZ-4 zeolites with high crystallinity are obtained in a broad window of synthesis conditions: seed mass concentration 0.2%-2%, SIO2/A1203 molar ratio 21 25, KOH/SiO2 molar ratio 0.33 0.43, H20/SiO2 molar ratio 7.14-38.1, aging time 24 h, crystallization temperature 160℃, and crystallization time 6-10 d. Also, crystallinity and size of the rod-like SUZ-4 zeolite crystals are found to alter with the conditions.展开更多
Gibbsite precipitation from sodium aluminate solution was intensified by adding mixed industrial and self-prepared active seeds,and its mechanism was researched preliminarily.The interfacial properties of seed/alumina...Gibbsite precipitation from sodium aluminate solution was intensified by adding mixed industrial and self-prepared active seeds,and its mechanism was researched preliminarily.The interfacial properties of seed/aluminate solution were determined for separate industrial and active seed.Contact angles of seed/aluminate solution and the specific surface area of seeds were respectively measured by sessile drop and BET method,and the morphology and particle size of precipitates were recorded by SEM and laser diffraction.The results show that,compared with the industrial seed,the active seed has a better wettability,lower interfacial tension,and larger specific surface area,being conducive to enhancing gibbsite precipitation from sodium aluminate solution.SEM analysis of the precipitates indicates that the embedment and accumulation/agglomeration of extremely fine particles on the surface of coarse industrial seed can effectively control the content of fine particles in the precipitation product.With extra 3.1–4.6 g/L active seed,the gibbsite precipitation ratio was increased by 3.23%–3.92%.Moreover,the mass percentage of particles<45μm in precipitation product has even a slight decrease compared with that for the traditional precipitation product or of the industrial seed itself.The result presented is favorable to developing an intensified gibbsite precipitation process for commercial alumina manufacture.展开更多
Monodispersed manganese ferrite (MnFe2O4) nanocrystals could be successfully synthesized in large quantities via a facile synthetic technique based on the pyrolysis of organometallic compound precursor, in which oct...Monodispersed manganese ferrite (MnFe2O4) nanocrystals could be successfully synthesized in large quantities via a facile synthetic technique based on the pyrolysis of organometallic compound precursor, in which octadecene was used as solvent, and oleic acid and oleylamine were used as capping ligands. MnFe204 nanocrystals were obtained with size in a tunable range of 4- 15 nm and their morphologies could be tuned from spherical to triangle-shaped by varying the surfactants. The phase structure, morphology, and size of the products were characterized in detail by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Magnetic properties of MnFe2O4 nanocrystals with different morphologies were measured using a superconducting quantum interference device (SQUID). Both monodisperse MnFe204 nanocrystals with spherical and triangle-shapes are superparamagnetic at room temperature while ferromagnetic at 2 K. The pyrolysis method may provide an effective route to synthesize other spinel ferrites or metal oxides nanocrystals.展开更多
The growing necessity of biomaterials has increased the interest in hydroxyapatite. Small differences in particle sizes, stoichiometry, morphology, crystallinity could lead to different clinical behaviors. In the pres...The growing necessity of biomaterials has increased the interest in hydroxyapatite. Small differences in particle sizes, stoichiometry, morphology, crystallinity could lead to different clinical behaviors. In the present work, stoichiometry and nanocrystal hydroxyapatite were prepared by wet chemical precipitation method. The effects of concentration of reagents, reaction temperatures and reaction time were studied. Transmission Electron Microscopy, Electron Diffraction, X - ray Diffraction, Fourier Transform Infrared Spectroscopy, arid Inductively Coupled Plasma Spectroscopy were used to characterize the precipitated hydroxyapatite powders. X - ray Diffraction and TEM micrographs results showed that crystallinity, morphology and particle sizes were largely dependent on reaction temperature. Chemical analysis showed that the purity of the precipitated hydroxyapatite depends on reaction time and reaction temperature. Degree of supersaturation and stirring could affect the crystallization process. Particles showed acicular morphology, and had a size of 20 - 30 nm in length at 20 ℃ and 37 ℃ and 150 - 160 nm in length at 75 ℃. Particles were monocrystalline at 20 ℃ and 37 ℃ , and were polycrystalline at 55 ℃ and 75 ℃. The results showed that hydroxyapatite powders with different particle size and morphology could be obtained with carefully controlled reaction conditions.展开更多
The results of struvite reaction crystallization from diluted water solutions of phosphates (V) (0.20 mass% of PO43-) by means of magnesium and ammonium ions are presented. Continuous FB MSZ crystallizer with jet ...The results of struvite reaction crystallization from diluted water solutions of phosphates (V) (0.20 mass% of PO43-) by means of magnesium and ammonium ions are presented. Continuous FB MSZ crystallizer with jet pump driven by compressed air was used. Influence of pH and mean residence time of suspension on the crystal product quality was determined. Increase in pH from 9 to 11 resulted that mean crystal size decreased nearly two-time: from 27.1 to 15.1μm for mean residence time of suspension 900 s. Elongation of this time from 900 to 3,600 s influenced struvite crystal size advantageously-it increased from 27.1 to 41.2 μm at pH 9. From the population density distributions nucleation and growth rates of struvite were calculated based on the simplest SIG model of mass crystallization kinetics in MSMPR crystallizer. Linear growth rate ofstruvite crystals decreased nearly two-time with the increase in environment pH from 9 to 11, and more than 2.5-time with the elongation of mean residence time of crystal suspension in a crystallizer from 900 to 3,600 s from 1.34× 10-8 m/s (pH 9, τ= 900 s) to 2.60×10-9 m/s (pH 11, τ= 3,600 s).展开更多
In this work, under pressure 5.4 GPa and temperature 1250-1400°C, large gem-diamond single crystals with perfect shape and different content of additive boron were synthesized using temperature gradient method. H...In this work, under pressure 5.4 GPa and temperature 1250-1400°C, large gem-diamond single crystals with perfect shape and different content of additive boron were synthesized using temperature gradient method. High-purity boron powders were added as boron source into the graphite powder, and the effects of additive boron on crystal growth habit were investigated in detail. The relationship between the growth rate and the amount of additive boron was studied. The scanning electron microscopy was employed to study the morphology of boron-doped diamond crystals. Raman spectroscopy and Hall measurements were used to investigate the crystal structures and the carrier concentration, respectively. The results show that with the increase of the content of boron added into graphite powder, the crystal growth rate and the carrier concentration increase firstly, and decrease afterwards, and the zone-center phonon line at 1332 cm 1 has small shift to lower energy. The defects occur on the crystal surface when excessive boron is added in the synthesis system.展开更多
基金Project(51021063)supported by the National Natural Science Fund for Innovation Group of ChinaProject(2012M521540)supported by China Post Doctoral Science Foundation+1 种基金Project(2013RS4027)supported by the Post Doctoral Scientific Foundation of Hunan Province,ChinaProject(CSUZC2013023)supported by the Precious Apparatus Open Share Foundation of Central South University,China
文摘Nanocrystalline Ni-Fe FCC alloy coatings with Fe content of 1.3%-39%(mass fraction) were fabricated on the nickel substrates using a DC electrodeposition technique. The crystal structure, lattice strain, grain size and lattice constant of the Ni-Fe alloy coatings were studied by X-ray diffraction technique. The chemical composition and surface morphology of the FCC Ni-Fe alloy coatings were investigated with the energy dispersive X-ray spectroscopy(EDS) and atomic force microscopy(AFM). The results show that the Fe content of the Ni-Fe alloy coatings has a great influence on the preferred orientation, grain size, lattice constant and lattice strain. FCC Ni-Fe alloy coatings exhibit preferred orientations of(200) or(200)(111). With an increase of Fe content, the preferred growth orientation of(200) plane is weakened gradually, while the preferred growth orientation of(111) increases. An increase of the Fe content in the range of 1.3%-25%(mass fraction) results in a significant grain refinement of the coatings. Increasing the Fe content beyond 25% does not decrease the grain size of FCC Ni-Fe alloys further. The lattice strain increases with increasing the Fe content in the FCC Ni-Fe alloys. Since the alloys with Fe content not less than 25% has similar grain size(~11 nm), the increase in the lattice strain with the increase of Fe content cannot be attributed to the change in the grain size.
基金The National Natural Science Foundation of China(No.51276064)the Natural Science Foundation of Hebei Province(No.E2013502292)
文摘The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stage, SO2 can react with product CaO and slow down the CaCO3 decomposition rate by the covering effect of the CaSO4 product. The sulfation rate of simultaneous calcinatiort/sulfation is slower than that of precalcined CaO, but with a long enough sulfation time, the calcium conversion of simultaneous calcination/sulfation is higher than that of the precalcined CaO. A grain-micrograin model is established to describe the simultaneous calcination, sintering and sulfation of limestone. The graln-micrograln model can reflect the true reaction process of the calcination and sulfation of limestone in oxy-fuel fluidized bed combustion.
基金supported by the National Natural Science Foundation of China (21503081,21503073,21403070,21707093)the National Key Research and Development Program of China (2017YFA0403102)~~
文摘A facile and effective method to synthesize TS‐1zeolite aggregates has been presented.The crystallization of silanized seeds and nanocrystallites led to large and irregular TS‐1zeolite aggregates ranging from5to40μm in size,based on the special sol‐gel chemistry of bridged organosilane.Epoxidation of1‐hexene and cyclohexene was used as a probe reaction to investigate the catalytic performance of the resulting materials.These TS‐1zeolite aggregates possessed both the conventional nanoparticle properties of TS‐1zeolites and variable surface hydrophilic/hydrophobic features,which enhanced the catalytic properties of hydroperoxides for alkene epoxidation.Moreover,the large aggregates effectively simplified the separation procedure during preparation and catalytic reactions.
文摘Cation substitution in spinel cobaltites(e.g.,ACo2O4,in which A=Mn,Fe,Co,Ni,Cu,or Zn)is a promising strategy to precisely modulate their electronic structure/properties and thus improve the corresponding electrochemical performance for water splitting.However,the fundamental principles and mechanisms are not fully understood.This research aims to systematically investigate the effects of cation substitution in spinel cobaltites derived from mixed-metal-organic frameworks on the oxygen evolution reaction(OER).Among the obtained ACo2O4 catalysts,FeCo2O4 showed excellent OER performance with a current density of 10 mA·cm^-2 at an overpotential of 164 mV in alkaline media.Both theoretical calculations and experimental results demonstrate that the Fe substitution in the crystal lattice of ACo2O4 can significantly accelerate charge transfer,thereby achieving enhanced electrochemical properties.The crystal field of spinel ACo2O4,which determines the valence states of cations A,is identified as the key factor to dictate the OER performance of these spinel cobaltites.
基金Project supported by the Qianjiang River Fellow Fund of ZhejiangProvince, and Bureau of Personnel and Human Resource, Ningbo,China
文摘The determination of the precise thickness-shear frequency of electroded crystal plates has practical importance in quartz crystal resonator design and fabricatiom especially when the high fundamental thickness-shear frequency has reduced the crystal plate thickness to such a degree that proper consideration of the effect of electrodes is very important. The electrodes effect as mass loading in the estimation of the resonance frequency has to be modified to consider the stiffness of electrodes, as the relative strength is increasingly noticeable. By following a known procedure in the determination of the thickness-shear frequency of an infinite AT-cut crystal plate, frequency equations of crystal plate without and with piezoelectric effect are obtained in terms of elastic constants and the electrode material density. After solving these equations for the usual design parameters of crystal resonators, the design process can be optimized to pinpoint the precise configuration to avoid time-consuming trial and reduction steps. Since these equations and solutions are presented for widely used materials and parameters, they can be easily integrated into the existing crystal resonator design and manufacturing processes.
基金Supported by the National Natural Science Foundation of China(20976084,21101094,21136005)
文摘Various conditions were investigated in detail for the novel organic template-free static hydrothermal synthesis of SUZ-4 zeolite in the presence of seeds. The obtained samples were characterized by XRD (X-ray diffraction), SEM (scanning electron microscope), TG (thermal gravimetric analysis), ICP (inductively coupling plasma) elemental analysis, nitrogen sorption isotherm and surface area. The results show that pure SUZ-4 zeolites with high crystallinity are obtained in a broad window of synthesis conditions: seed mass concentration 0.2%-2%, SIO2/A1203 molar ratio 21 25, KOH/SiO2 molar ratio 0.33 0.43, H20/SiO2 molar ratio 7.14-38.1, aging time 24 h, crystallization temperature 160℃, and crystallization time 6-10 d. Also, crystallinity and size of the rod-like SUZ-4 zeolite crystals are found to alter with the conditions.
基金Project(51604309)supported by the National Natural Science Foundation of ChinaProject(2015BAB04B01)supported by the National Key Technology R&D Program of China
文摘Gibbsite precipitation from sodium aluminate solution was intensified by adding mixed industrial and self-prepared active seeds,and its mechanism was researched preliminarily.The interfacial properties of seed/aluminate solution were determined for separate industrial and active seed.Contact angles of seed/aluminate solution and the specific surface area of seeds were respectively measured by sessile drop and BET method,and the morphology and particle size of precipitates were recorded by SEM and laser diffraction.The results show that,compared with the industrial seed,the active seed has a better wettability,lower interfacial tension,and larger specific surface area,being conducive to enhancing gibbsite precipitation from sodium aluminate solution.SEM analysis of the precipitates indicates that the embedment and accumulation/agglomeration of extremely fine particles on the surface of coarse industrial seed can effectively control the content of fine particles in the precipitation product.With extra 3.1–4.6 g/L active seed,the gibbsite precipitation ratio was increased by 3.23%–3.92%.Moreover,the mass percentage of particles<45μm in precipitation product has even a slight decrease compared with that for the traditional precipitation product or of the industrial seed itself.The result presented is favorable to developing an intensified gibbsite precipitation process for commercial alumina manufacture.
基金Project(2010QZZD008) supported by the Prospect Key Projects of Fundamental Research Funds for the Central UniversitiesProject(2007FJ3008) supported by the Hunan Provincial Key Science and Technology Program of China
文摘Monodispersed manganese ferrite (MnFe2O4) nanocrystals could be successfully synthesized in large quantities via a facile synthetic technique based on the pyrolysis of organometallic compound precursor, in which octadecene was used as solvent, and oleic acid and oleylamine were used as capping ligands. MnFe204 nanocrystals were obtained with size in a tunable range of 4- 15 nm and their morphologies could be tuned from spherical to triangle-shaped by varying the surfactants. The phase structure, morphology, and size of the products were characterized in detail by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Magnetic properties of MnFe2O4 nanocrystals with different morphologies were measured using a superconducting quantum interference device (SQUID). Both monodisperse MnFe204 nanocrystals with spherical and triangle-shapes are superparamagnetic at room temperature while ferromagnetic at 2 K. The pyrolysis method may provide an effective route to synthesize other spinel ferrites or metal oxides nanocrystals.
文摘The growing necessity of biomaterials has increased the interest in hydroxyapatite. Small differences in particle sizes, stoichiometry, morphology, crystallinity could lead to different clinical behaviors. In the present work, stoichiometry and nanocrystal hydroxyapatite were prepared by wet chemical precipitation method. The effects of concentration of reagents, reaction temperatures and reaction time were studied. Transmission Electron Microscopy, Electron Diffraction, X - ray Diffraction, Fourier Transform Infrared Spectroscopy, arid Inductively Coupled Plasma Spectroscopy were used to characterize the precipitated hydroxyapatite powders. X - ray Diffraction and TEM micrographs results showed that crystallinity, morphology and particle sizes were largely dependent on reaction temperature. Chemical analysis showed that the purity of the precipitated hydroxyapatite depends on reaction time and reaction temperature. Degree of supersaturation and stirring could affect the crystallization process. Particles showed acicular morphology, and had a size of 20 - 30 nm in length at 20 ℃ and 37 ℃ and 150 - 160 nm in length at 75 ℃. Particles were monocrystalline at 20 ℃ and 37 ℃ , and were polycrystalline at 55 ℃ and 75 ℃. The results showed that hydroxyapatite powders with different particle size and morphology could be obtained with carefully controlled reaction conditions.
文摘The results of struvite reaction crystallization from diluted water solutions of phosphates (V) (0.20 mass% of PO43-) by means of magnesium and ammonium ions are presented. Continuous FB MSZ crystallizer with jet pump driven by compressed air was used. Influence of pH and mean residence time of suspension on the crystal product quality was determined. Increase in pH from 9 to 11 resulted that mean crystal size decreased nearly two-time: from 27.1 to 15.1μm for mean residence time of suspension 900 s. Elongation of this time from 900 to 3,600 s influenced struvite crystal size advantageously-it increased from 27.1 to 41.2 μm at pH 9. From the population density distributions nucleation and growth rates of struvite were calculated based on the simplest SIG model of mass crystallization kinetics in MSMPR crystallizer. Linear growth rate ofstruvite crystals decreased nearly two-time with the increase in environment pH from 9 to 11, and more than 2.5-time with the elongation of mean residence time of crystal suspension in a crystallizer from 900 to 3,600 s from 1.34× 10-8 m/s (pH 9, τ= 900 s) to 2.60×10-9 m/s (pH 11, τ= 3,600 s).
文摘In this work, under pressure 5.4 GPa and temperature 1250-1400°C, large gem-diamond single crystals with perfect shape and different content of additive boron were synthesized using temperature gradient method. High-purity boron powders were added as boron source into the graphite powder, and the effects of additive boron on crystal growth habit were investigated in detail. The relationship between the growth rate and the amount of additive boron was studied. The scanning electron microscopy was employed to study the morphology of boron-doped diamond crystals. Raman spectroscopy and Hall measurements were used to investigate the crystal structures and the carrier concentration, respectively. The results show that with the increase of the content of boron added into graphite powder, the crystal growth rate and the carrier concentration increase firstly, and decrease afterwards, and the zone-center phonon line at 1332 cm 1 has small shift to lower energy. The defects occur on the crystal surface when excessive boron is added in the synthesis system.