True Boiling Point (TBP) distillation is one of the most common experimental techniques for determination of petroleum properties. The methods for performing TBP distillation experiments are described by ASTM D2892 ...True Boiling Point (TBP) distillation is one of the most common experimental techniques for determination of petroleum properties. The methods for performing TBP distillation experiments are described by ASTM D2892 and by ASTM D5236. However, these methods are established for petroleum fractions that reach temperatures up to 565 ~C. In this work, two petroleum residues were distilled in a falling film molecular distillation prototype and the data were used to obtain the extension of the TBP curve above a temperature of 565 ~C. It was possible to extend the TBP curve of both petroleum up to temperatures close to 700 ~C with consistency and continuity in comparison to the standard curve. In addition, an amount of raw material that was been treated as residue could be reused.展开更多
Three high-acidity crudes, Dar, SZ36-1, and QHD326, were separated through distillation into several fractions, including diesel distillates, and VGOs. Samples were characterized by negative-ion ESI FT-ICR MS. The O2 ...Three high-acidity crudes, Dar, SZ36-1, and QHD326, were separated through distillation into several fractions, including diesel distillates, and VGOs. Samples were characterized by negative-ion ESI FT-ICR MS. The O2 class species (petroleum carboxylic acids), which have a close relationship with corrosion of equipment caused by high-acidity crudes, were put in the focus of attention and were discussed in this paper. Monocyclic, bicyclic, and tricyclic naphthenic acids are the main types of petroleum carboxylic acids in naphthenic-base crudes (SZ36-1 and QHD326). But the main types of petroleum carboxylic acids in paraffinic-base crude (Dar) are aliphatic acids and monocyclic naphthenic acids. The O2 class species in SZ36-1 and QHD326 are distributed in a wider range and have bigger DBE value (double-bond equivalence value) and carbon number than Dar. Bicyclic naphthenic acids have the highest proportion among petroleum carboxylie acids in diesel distillates, but monocyclic and tricyclic naphthenic acids also occupy a high proportion. Particularly, aliphatic acids in the diesel distillate of Dar still have high proportion among petroleum carboxylic acids. The distribution of petroleum carboxylic acids in VGO is basically identical. The bicyclic naphthenic acids assume the first place (about 25 m%), while the monocyclic and tricyclic naphthenic acids take the next place. The comparison of petroleum carboxylic acids in diesel distillates and VGOs has revealed that the molecules of carboxylic acids in VGOs are not only bigger but also more complicated.展开更多
A general equation is proposed for predicting the liquid viscosities of petroleum fractions based on a generalized pseudocompound method in which pure hydrocarbons and undefined hydrocarbon mixtures or petroleum fract...A general equation is proposed for predicting the liquid viscosities of petroleum fractions based on a generalized pseudocompound method in which pure hydrocarbons and undefined hydrocarbon mixtures or petroleum fractions are treated as a hypothetical pure substance called pseudocompound which is characterized only by a boiling point and a density. The equation is tested by using the liquid viscosities of the petroleum fractions of typical American crude oils and crude oils from major oil producing areas. Good agreement between the predicted and experimental viscosities for the petroleum fractions is obtained.展开更多
Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analys...Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analysis and exergy cost optimization in petrochemical industry is of great economic and environmental significance. Based on the main fractionator in Jiujiang Petrochemical Complex No. 2 FCCU, an enhanced exergy cost optimization under different operating conditions by adjusting set points of temperature and valves opening degree for flow control is studied in this paper in order to reduce exergy cost and improve the quality of energy. A steadystate optimization algorithm to enhance exergy availability and an objective function comprehensively considering exergy loss are proposed. On the basis of ensuring the quality of petroleum products, the economic benefits can be improved by optimizing the controllable variables due to the fact that exergy cost is decreased.展开更多
Modification and characterization of natural zeolite under some various methods for hydrocracking catalyst of waste lubricant to gasoline and diesel fractions have been conducted. Natural zeolite from Klaten was activ...Modification and characterization of natural zeolite under some various methods for hydrocracking catalyst of waste lubricant to gasoline and diesel fractions have been conducted. Natural zeolite from Klaten was activated using hydrothermal treatment at temperature 500 ℃ for 6 h (produced ZAAHd), the ZA sample was treated with hydrothermal followed by Microwave (produced ZAAHdM), the ZA sample was treated with HCI 3 N at temperature of 90 ℃ for 30 min (produced ZAAH), the ZAAH sample was heated in to microwave (produced ZAAHM), the ZAAHM was treated hydrothermal (produced ZAAHMHd), the ZAAHMHd sample was heated in to microwave (produced ZAAHMHdM), soaking of natural zeolit activated by HCl-microwave-hydrothermal-microwave in NH4NO3 1 N which was stirred using stirer at room temperature for 24 h (produced ZAAHMHdMN) and the ZAAHMHdMN sample was heated into microwave (ZAAHMHdMNM). The heating process by microwave was conducted at 550 watt for 15 rain. Catalyst characterization involved determination of the number of total acid sites using gravimetric method with vapour adsorption of NH3 and pyridine, catalyst crystallinity by XRD (X-ray diffraction) and TO4 (T= Si and AI) site by infra red spectrophotometer (IR). Hydrocracking of waste lubricants oil was performed in a fixed bed reactor of stainless steel at temperature of 450 ℃, H2 flow rate of 15 mL/min., feed/catalyst ratio of 5. Liquid products of the hydrocracking were analyzed using GC (gas chromatography). The characterization results showed that various modification of natural zeolite increased acidity and dealumination degree of the catalysts. Products of the hydrocracking were liquid, coke, and gas fractions. Liquid products consisted of gasoline fraction (C5-C12), diesel fraction (C12-C20), and heavy oil fraction (〉 C20).Thc conversion of liquid products was increased with the increase of catalyst acidity. The greatest liquid product conversion was produced by the ZAAHMHdMNM catalyst, i.e., 56.80%, with selectivity towards gasoline, diesel, and heavy oil fractions was 88.37%, 8.61% and 3.02%, respectively. The increase of catalyst acidity increased the selectivity of gasoline fraction.展开更多
文摘True Boiling Point (TBP) distillation is one of the most common experimental techniques for determination of petroleum properties. The methods for performing TBP distillation experiments are described by ASTM D2892 and by ASTM D5236. However, these methods are established for petroleum fractions that reach temperatures up to 565 ~C. In this work, two petroleum residues were distilled in a falling film molecular distillation prototype and the data were used to obtain the extension of the TBP curve above a temperature of 565 ~C. It was possible to extend the TBP curve of both petroleum up to temperatures close to 700 ~C with consistency and continuity in comparison to the standard curve. In addition, an amount of raw material that was been treated as residue could be reused.
文摘Three high-acidity crudes, Dar, SZ36-1, and QHD326, were separated through distillation into several fractions, including diesel distillates, and VGOs. Samples were characterized by negative-ion ESI FT-ICR MS. The O2 class species (petroleum carboxylic acids), which have a close relationship with corrosion of equipment caused by high-acidity crudes, were put in the focus of attention and were discussed in this paper. Monocyclic, bicyclic, and tricyclic naphthenic acids are the main types of petroleum carboxylic acids in naphthenic-base crudes (SZ36-1 and QHD326). But the main types of petroleum carboxylic acids in paraffinic-base crude (Dar) are aliphatic acids and monocyclic naphthenic acids. The O2 class species in SZ36-1 and QHD326 are distributed in a wider range and have bigger DBE value (double-bond equivalence value) and carbon number than Dar. Bicyclic naphthenic acids have the highest proportion among petroleum carboxylie acids in diesel distillates, but monocyclic and tricyclic naphthenic acids also occupy a high proportion. Particularly, aliphatic acids in the diesel distillate of Dar still have high proportion among petroleum carboxylic acids. The distribution of petroleum carboxylic acids in VGO is basically identical. The bicyclic naphthenic acids assume the first place (about 25 m%), while the monocyclic and tricyclic naphthenic acids take the next place. The comparison of petroleum carboxylic acids in diesel distillates and VGOs has revealed that the molecules of carboxylic acids in VGOs are not only bigger but also more complicated.
基金Supported by the National Natural Science Foundation of China and the SINOPEC.
文摘A general equation is proposed for predicting the liquid viscosities of petroleum fractions based on a generalized pseudocompound method in which pure hydrocarbons and undefined hydrocarbon mixtures or petroleum fractions are treated as a hypothetical pure substance called pseudocompound which is characterized only by a boiling point and a density. The equation is tested by using the liquid viscosities of the petroleum fractions of typical American crude oils and crude oils from major oil producing areas. Good agreement between the predicted and experimental viscosities for the petroleum fractions is obtained.
基金Supported by the National Natural Science Foundation of China(61590924,61673273,61521063)
文摘Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analysis and exergy cost optimization in petrochemical industry is of great economic and environmental significance. Based on the main fractionator in Jiujiang Petrochemical Complex No. 2 FCCU, an enhanced exergy cost optimization under different operating conditions by adjusting set points of temperature and valves opening degree for flow control is studied in this paper in order to reduce exergy cost and improve the quality of energy. A steadystate optimization algorithm to enhance exergy availability and an objective function comprehensively considering exergy loss are proposed. On the basis of ensuring the quality of petroleum products, the economic benefits can be improved by optimizing the controllable variables due to the fact that exergy cost is decreased.
文摘Modification and characterization of natural zeolite under some various methods for hydrocracking catalyst of waste lubricant to gasoline and diesel fractions have been conducted. Natural zeolite from Klaten was activated using hydrothermal treatment at temperature 500 ℃ for 6 h (produced ZAAHd), the ZA sample was treated with hydrothermal followed by Microwave (produced ZAAHdM), the ZA sample was treated with HCI 3 N at temperature of 90 ℃ for 30 min (produced ZAAH), the ZAAH sample was heated in to microwave (produced ZAAHM), the ZAAHM was treated hydrothermal (produced ZAAHMHd), the ZAAHMHd sample was heated in to microwave (produced ZAAHMHdM), soaking of natural zeolit activated by HCl-microwave-hydrothermal-microwave in NH4NO3 1 N which was stirred using stirer at room temperature for 24 h (produced ZAAHMHdMN) and the ZAAHMHdMN sample was heated into microwave (ZAAHMHdMNM). The heating process by microwave was conducted at 550 watt for 15 rain. Catalyst characterization involved determination of the number of total acid sites using gravimetric method with vapour adsorption of NH3 and pyridine, catalyst crystallinity by XRD (X-ray diffraction) and TO4 (T= Si and AI) site by infra red spectrophotometer (IR). Hydrocracking of waste lubricants oil was performed in a fixed bed reactor of stainless steel at temperature of 450 ℃, H2 flow rate of 15 mL/min., feed/catalyst ratio of 5. Liquid products of the hydrocracking were analyzed using GC (gas chromatography). The characterization results showed that various modification of natural zeolite increased acidity and dealumination degree of the catalysts. Products of the hydrocracking were liquid, coke, and gas fractions. Liquid products consisted of gasoline fraction (C5-C12), diesel fraction (C12-C20), and heavy oil fraction (〉 C20).Thc conversion of liquid products was increased with the increase of catalyst acidity. The greatest liquid product conversion was produced by the ZAAHMHdMNM catalyst, i.e., 56.80%, with selectivity towards gasoline, diesel, and heavy oil fractions was 88.37%, 8.61% and 3.02%, respectively. The increase of catalyst acidity increased the selectivity of gasoline fraction.