Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock ph...Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.展开更多
Field SZ36-1 is a water-flooded heavy oil reservoir with high porosity and unconsolidated sand. The recovery rate is low so that it becomes a challenge for production. Time-lapse seismic data is studied to improve the...Field SZ36-1 is a water-flooded heavy oil reservoir with high porosity and unconsolidated sand. The recovery rate is low so that it becomes a challenge for production. Time-lapse seismic data is studied to improve the oil recovery for this field, This feasibility study analyzes the possible time-lapse seismic attribute spatial distribution using dynamic data and the reservoir model to determine the optimum time to acquire a new seismic survey. Based on the study, it is found that the time-lapse seismic response for this unconsolidated sand has a strong signature due to solution gas when the reservoir pressure is below the bubble point. This indicates that acquiring a new survey after 10 years of production is appropriate for a time-lapse seismic application.展开更多
This paper summarizes the technological progress of the Chinese petroleum geophysical industry in recent years and analyzes in detail the trend of development in the petroleum industry as well as the main challenges t...This paper summarizes the technological progress of the Chinese petroleum geophysical industry in recent years and analyzes in detail the trend of development in the petroleum industry as well as the main challenges to geophysical techniques on the mainland. Proposals to improve the situation have also been put forward.展开更多
基金supported by the National 973 project(Nos.2014CB239006 and 2011CB202402)the National Natural Science Foundation of China(Nos.41104069 and 41274124)+1 种基金Sinopec project(No.KJWX2014-05)the Fundamental Research Funds for the Central Universities(No.R1401005A)
文摘Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.
文摘Field SZ36-1 is a water-flooded heavy oil reservoir with high porosity and unconsolidated sand. The recovery rate is low so that it becomes a challenge for production. Time-lapse seismic data is studied to improve the oil recovery for this field, This feasibility study analyzes the possible time-lapse seismic attribute spatial distribution using dynamic data and the reservoir model to determine the optimum time to acquire a new seismic survey. Based on the study, it is found that the time-lapse seismic response for this unconsolidated sand has a strong signature due to solution gas when the reservoir pressure is below the bubble point. This indicates that acquiring a new survey after 10 years of production is appropriate for a time-lapse seismic application.
文摘This paper summarizes the technological progress of the Chinese petroleum geophysical industry in recent years and analyzes in detail the trend of development in the petroleum industry as well as the main challenges to geophysical techniques on the mainland. Proposals to improve the situation have also been put forward.