The development of measurement geometry for medical X-ray computed tomography (CT) scanners was carried out from the first to the fourth-generation. This concept has also been applied for imaging of industrial proce...The development of measurement geometry for medical X-ray computed tomography (CT) scanners was carried out from the first to the fourth-generation. This concept has also been applied for imaging of industrial processes such as pipe flows or for improving design, operation, optimization and troubleshooting. Nowadays, gamma CT permits to visualize failure equipment points in three-dimensional analysis and in sections of chemical and petrochemical industries. The aim of this work is the development of the mechanical system on a third-generation industrial CT scanner to analyze laboratorial process columns which perform highly efficient separation, turning the ^6oCo, ^75Se, ^137Cs and/or ^192Ir sealed gamma-ray source(s) and the NaI(Tl) multidetector array. It also has a translation movement along the column axis to obtain as many slices of the process flow as needed. The mechanical assembly for this third-generation industrial CT scanner is comprised by strength and rigidity structural frame in stainless and carbon steels, rotating table, source shield and collimator with pneumatic exposure system, spur gear system, translator, rotary stage, drives and stepper motors. The use of suitable spur gears has given a good repeatability and high accuracy in the degree of veracity. The data acquisition boards, mechanical control interfaces, software for movement control and image reconstruction were specially development. A multiphase phantom capable to be setting with solid, liquid and gas was testing. The scanner was setting for 90 views and 19 projections for each detector totalizing 11,970 projections. Experiments to determine the linear attenuation coefficients of the phantom were carried out which applied the Lambert-Beer principle. Results showed that it was possible to distinguish between the phases even the polymethylmethacrylate and the water have very similar density and linear attenuation coefficients. It was established that the newly developed third-generation fan-beam arrangement gamma scanner unit has a good spatial resolution acceptable given the size of the used phantom in this study. The tomografic reconstruction algorithm in used 60 ~ 60 pixels images was the Alternative Minimization (AM) technique and was implemented in MATLAB and VB platforms. The mechanical system presented a good performance in terms of strength, rigidity, accuracy and repeatability with great potential to be used for education or program which dedicated to training chemical and petrochemical industry professionals and for industrial process optimization in Brazil.展开更多
文摘The development of measurement geometry for medical X-ray computed tomography (CT) scanners was carried out from the first to the fourth-generation. This concept has also been applied for imaging of industrial processes such as pipe flows or for improving design, operation, optimization and troubleshooting. Nowadays, gamma CT permits to visualize failure equipment points in three-dimensional analysis and in sections of chemical and petrochemical industries. The aim of this work is the development of the mechanical system on a third-generation industrial CT scanner to analyze laboratorial process columns which perform highly efficient separation, turning the ^6oCo, ^75Se, ^137Cs and/or ^192Ir sealed gamma-ray source(s) and the NaI(Tl) multidetector array. It also has a translation movement along the column axis to obtain as many slices of the process flow as needed. The mechanical assembly for this third-generation industrial CT scanner is comprised by strength and rigidity structural frame in stainless and carbon steels, rotating table, source shield and collimator with pneumatic exposure system, spur gear system, translator, rotary stage, drives and stepper motors. The use of suitable spur gears has given a good repeatability and high accuracy in the degree of veracity. The data acquisition boards, mechanical control interfaces, software for movement control and image reconstruction were specially development. A multiphase phantom capable to be setting with solid, liquid and gas was testing. The scanner was setting for 90 views and 19 projections for each detector totalizing 11,970 projections. Experiments to determine the linear attenuation coefficients of the phantom were carried out which applied the Lambert-Beer principle. Results showed that it was possible to distinguish between the phases even the polymethylmethacrylate and the water have very similar density and linear attenuation coefficients. It was established that the newly developed third-generation fan-beam arrangement gamma scanner unit has a good spatial resolution acceptable given the size of the used phantom in this study. The tomografic reconstruction algorithm in used 60 ~ 60 pixels images was the Alternative Minimization (AM) technique and was implemented in MATLAB and VB platforms. The mechanical system presented a good performance in terms of strength, rigidity, accuracy and repeatability with great potential to be used for education or program which dedicated to training chemical and petrochemical industry professionals and for industrial process optimization in Brazil.