期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
四川盆地北缘灯影组深埋白云岩优质储层形成与保存机制 被引量:30
1
作者 王国芝 刘树根 +2 位作者 李娜 王东 高媛 《岩石学报》 SCIE EI CAS CSCD 北大核心 2014年第3期667-678,共12页
叠合盆地深埋碳酸盐岩优质储层的形成和保存机理是一个复杂而又有争议的议题。大量的地质地球化学证据表明,四川盆地北缘灯影组深埋白云岩在灯四段和灯二段末期先后发生了两期古岩溶作用,在灯影组内形成了大小不等的晶洞和次生孔隙。在... 叠合盆地深埋碳酸盐岩优质储层的形成和保存机理是一个复杂而又有争议的议题。大量的地质地球化学证据表明,四川盆地北缘灯影组深埋白云岩在灯四段和灯二段末期先后发生了两期古岩溶作用,在灯影组内形成了大小不等的晶洞和次生孔隙。在后期的深埋-隆升过程中,表生期的岩溶孔洞被不同世代的矿物充填,先存的孔洞被不同程度的改造和破坏,随埋藏深度的增加先存孔洞的体积变小;同时CO2、有机酸、H2S和多期外来酸性热液流体的溶蚀改造又形成了部分新的次生孔洞;油气藏主要赋存于残余的表生岩溶孔洞和新生次生溶孔内。研究表明,灯影组深埋白云岩优质储层的形成和保存不仅受表生岩溶作用、古岩溶地貌和沉积微相的影响和控制,而且还受深埋隆升过程中多期流体充注、溶蚀-沉淀和石油热裂解的复合控制。其中,表生岩溶作用是影响优质储层形成的最为关键性因素,古岩溶地貌和沉积微相控制了优质储层的时空分布,表生岩溶作用影响的深度最深达500m左右。多期侵蚀性流体的溶蚀和石油热裂解所引起的超压使先存表生岩溶孔洞能得以保存。 展开更多
关键词 深埋白云岩 优质储层 表生岩溶 深埋溶蚀-沉淀 石油热裂解 灯影组 四川盆地北缘
下载PDF
Intensification of Ethylene Production from Naphtha via a Redox Oxy-Cracking Scheme: Process Simulations and Analysis 被引量:9
2
作者 Vasudev Pralhad Haribal Yun Chen +1 位作者 Luke Neal Fanxing Li 《Engineering》 2018年第5期714-721,共8页
Ethylene production by the thermal cracking of naphtha is an energy-intensive process (up to 40 GJ heat per tonne ethylene), leading to significant formation of coke and nitrogen oxide (NOx), along with 1,8- 2 kg ... Ethylene production by the thermal cracking of naphtha is an energy-intensive process (up to 40 GJ heat per tonne ethylene), leading to significant formation of coke and nitrogen oxide (NOx), along with 1,8- 2 kg of carbon dioxide (CO2) emission per kilogram of ethylene produced, We propose an alternative pro- cess for the redox oxy-cracking (ROC) of naphtha, In this two-step process, hydrogen (H2) from naphtha cracking is selectively comhusted by a redox catalyst with its lattice oxygen first, The redox catalyst is subsequently re-oxidized by air and releases heat, which is used to satisfy the heat requirement for the cracking reactions, This intensified process reduces parasitic energy consumption and CO2 and NOx emissions, Moreover, the formation of ethylene and propylene can he enhanced due to the selective com-bustion of H2, In this study, the ROC process is simulated with ASPEN Plus^R based on experimental data from recently developed redox catalysts, Compared with traditional naphtha cracking, the ROC process can provide up to 52% reduction in energy consumption and CO2 emissions, The upstream section of the process consumes approximately 67% less energy while producing 28% more ethylene and propylene for every kilogram of naphtha feedstock, 展开更多
关键词 ETHYLENE Naphtha cracking Process intensification Chemical looping Process simulations
下载PDF
Simulation of hydrocarbons pyrolysis in a fast-mixing reactor 被引量:1
3
作者 M.G.Ktalkherman I.G.Namyatov 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第6期941-953,共13页
Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are ... Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of hightemperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature(up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas(LPG) and naphtha are used as a feedstock. The detailed data are obtained on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases(LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantially higher than in current technology. 展开更多
关键词 Liquefied petroleum gas PYROLYSIS OLEFINS Fast-mixing reactor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部