In recent years,oil spill accidents occur frequently in the marine area of China.Finding out the spilled oil source is a key step in the relevant investigation.In this paper,a step-by-step fingerprinting identificatio...In recent years,oil spill accidents occur frequently in the marine area of China.Finding out the spilled oil source is a key step in the relevant investigation.In this paper,a step-by-step fingerprinting identification method was used in a spilled oil accident in the Bohai Sea in 2002.Advanced chemical fingerprinting and data interpretation techniques were used to characterize the chemical composition and determine the possible sources of two spilled oil samples.The original gas chromatography -flame ionization detec-tion (GC-FID) chromatogram of saturated hydrocarbons was compared.The gas chromatography-mass spectrometry (GC/MS) chromatograms of aromatic hydrocarbons terpane and sterane,n-alkane and poly-aromatic hydrocarbons (PAHs) were analyzed.The correlation analysis on diagnostic ratios was performed with Student’s t-test.It is found that the oil fingerprinting of the spilled oil (designated as sz1) from the polluted sand beach was identical with the suspected oil (designated as ky1) from a nearby crude oil refinery factory.They both showed the fingerprinting character of mixed oil.The oil fingerprinting of the spilled oil (designated as ms1) collected from the port was significantly different from oil ky1 and oil sz1 and was with a lubricating oil fingerprint character.The identification result not only gave support for the spilled oil investigation,but also served as an example for studying spilled oil accidents.展开更多
Sedimentary basins in the Yellow Sea can be grouped tectonically into the North Yellow Sea Basin (NYSB), the northern basin of the South Yellow Sea (SYSNB) and the southern basin of the South Yellow Sea (SYSSB). The N...Sedimentary basins in the Yellow Sea can be grouped tectonically into the North Yellow Sea Basin (NYSB), the northern basin of the South Yellow Sea (SYSNB) and the southern basin of the South Yellow Sea (SYSSB). The NYSB is connected to Anju Basin to the east. The SYSSB extends to Subei Basin to the west. The acoustic basement of basins in the North Yellow Sea and South Yellow Sea is disparate, having different stratigraphic evolution and oil accumulation features, even though they have been under the same stress regime since the Late Triassic. The acoustic basement of the NYSB features China-Korea Platform crystalline rocks, whereas those in the SYSNB and SYSSB are of the Paleozoic Yangtze Platform sedimentary layers or metamorphic rocks. Since the Late Mesozoic terrestrial strata in the eastern of the NYSB (West Korea Bay Basin) were discovered having industrial hydrocarbon accumulation, the oil potential in the Mesozoic strata in the west depression of the basin could be promising, although the petroleum exploration in the South Yellow Sea has made no break-through yet. New deep reflection data and several drilling wells have indicated the source rock of the Mesozoic in the basins of South Yellow Sea, and the Paleozoic platform marine facies in the SYSSB and Central Rise could be the other hosts of oil or natural gas. The Mesozoic hydrocarbon could be found in the Mesozoic of the foredeep basin in the SYSNB that bears potential hydrocarbon in thick Cretaceous strata, and so does the SYSSB where the same petroleum system exists to that of oil-bearing Subei Basin.展开更多
Oil spills have become a serious problem in cold environments with the ever-increasing resource exploitation, transportation, storage, and accidental leakage of oil. Several techniques, including physical, chemical, a...Oil spills have become a serious problem in cold environments with the ever-increasing resource exploitation, transportation, storage, and accidental leakage of oil. Several techniques, including physical, chemical, and biological methods, are used to recover spilled oil from the environment. Bioremediation is a promising option for remediation since it is effective and economic in removing oil with less undue environmental damages. However, it is a relatively slow process in cold regions and the degree of success depends on a number of factors, including the properties and fate of oil spilled in cold environments, and the major microbial and environmental limitations of bioremediation. The microbial factors include bioavailability of hydrocarbons, mass transfer through the cell membrane, and metabolic limitations. As for the environmental limitations in the cold regions, the emphasis is on soil temperatures, freeze-thaw processes, oxygen and nutrients availability, toxicity, and electron acceptors. There have been several cases of success in the polar regions, particularly in the Arctic and sub-Arctic regions. However, the challenges and constraints for bioremediation in cold environments remain large.展开更多
The method has been established to calculate the environmental capacity (ECO), surplus environment capacity (SECO) of water with respect to marine petroleum hydrocarbons associated with oil (PHAOs) and the self-purifi...The method has been established to calculate the environmental capacity (ECO), surplus environment capacity (SECO) of water with respect to marine petroleum hydrocarbons associated with oil (PHAOs) and the self-purification capacity (SPCO) of main self-purification process to PHAOs in the Jiaozhou Bay, China, according to the dynamic model for distribution of marine PHAOs among multiphase environments. The variation of concentration of PHAOs in the Jiaozhou Bay is well simulated by the dynamic model. Based on the model, the ECo, SECo of water with respect to PHAOs in the Jiaozhou Bay were calculated during the last 10 years under the first-class and second-class quality standard requirement, according to SPCO of main self-purification process to PHAOs. The results show that about 200 tons of PHAOs could be discharged into the Jiaozhou Bay for maintaining the first class seawater quality standard, and about 600 tons of PHAOs for the second class seawater quality standard later.展开更多
The pollution condition of petroleum hydrocarbon (PH) was summarized in the Bohai Sea in this paper. The results showed that the mean concentration of PH was (25.7±13.6) mg/m3, varying from 4.4 to 64.8 mg/m3 in t...The pollution condition of petroleum hydrocarbon (PH) was summarized in the Bohai Sea in this paper. The results showed that the mean concentration of PH was (25.7±13.6) mg/m3, varying from 4.4 to 64.8 mg/m3 in the survey sea area. Laizhou Bay and Bohai Bay have been contaminated badly inshore. The dynamic model for distribution of marine PH among multiphase environments in the Bohai Sea has been established. The environmental capacities (ECO) and surplus environmental capacities (SECO) of PH have been estimated in the Bohai Sea according to the dynamic model. The results showed that the ECo separately were about 29 169 t/a, 177 306 t/a and 298 446 t/a under the first, second and third, fourth class seawater quality standards requirement. And the ECO of Bohai Bay, Liaodong Bay, Laizhou Bay and Central Bohai Sea were about 5 255 t/a, 8 869 t/a, 4889 t/a and 10 156 t/a respectively under the first and second class seawater quality standards requirement.展开更多
Manghan Faulted Sag is an exploratory target area in Kailu Basin. In order to determine its exploration prospect, the effectiveness of its source rocks is evaluated by organic geochemical behavior analysis of the samp...Manghan Faulted Sag is an exploratory target area in Kailu Basin. In order to determine its exploration prospect, the effectiveness of its source rocks is evaluated by organic geochemical behavior analysis of the samples, and their distributions are predicted using trace integration seismic inversion technology. Studies on their organic matter abundance, type and maturity indicate that the source rocks in the Sag have great generating potentials. Furthermore, it is found that, based on the spatial distribution predication, the source rocks in the Sag are well developed. Therefore, the Sag has a promising prospect for exploration.展开更多
A general equation is proposed for predicting the liquid viscosities of petroleum fractions based on a generalized pseudocompound method in which pure hydrocarbons and undefined hydrocarbon mixtures or petroleum fract...A general equation is proposed for predicting the liquid viscosities of petroleum fractions based on a generalized pseudocompound method in which pure hydrocarbons and undefined hydrocarbon mixtures or petroleum fractions are treated as a hypothetical pure substance called pseudocompound which is characterized only by a boiling point and a density. The equation is tested by using the liquid viscosities of the petroleum fractions of typical American crude oils and crude oils from major oil producing areas. Good agreement between the predicted and experimental viscosities for the petroleum fractions is obtained.展开更多
A field work has been carried out to identify the occurrence of oil and oil products pollution in mangrove sediment from Red Sea of Yemen. The concentration of total petroleum hydrocarbons is from 700ng/g at Kamaran I...A field work has been carried out to identify the occurrence of oil and oil products pollution in mangrove sediment from Red Sea of Yemen. The concentration of total petroleum hydrocarbons is from 700ng/g at Kamaran Island station to 400 ng/g at Al-Hodiedah station, and the total organic carbon (TOC) in samples ranges from 0.07% at Dhubab station to 0.03% at Kamaran Island station. This pollution is as a result of localized oil pollution and/or heavy ship traffic in the Red Sea and Gulf of Aden.展开更多
文摘In recent years,oil spill accidents occur frequently in the marine area of China.Finding out the spilled oil source is a key step in the relevant investigation.In this paper,a step-by-step fingerprinting identification method was used in a spilled oil accident in the Bohai Sea in 2002.Advanced chemical fingerprinting and data interpretation techniques were used to characterize the chemical composition and determine the possible sources of two spilled oil samples.The original gas chromatography -flame ionization detec-tion (GC-FID) chromatogram of saturated hydrocarbons was compared.The gas chromatography-mass spectrometry (GC/MS) chromatograms of aromatic hydrocarbons terpane and sterane,n-alkane and poly-aromatic hydrocarbons (PAHs) were analyzed.The correlation analysis on diagnostic ratios was performed with Student’s t-test.It is found that the oil fingerprinting of the spilled oil (designated as sz1) from the polluted sand beach was identical with the suspected oil (designated as ky1) from a nearby crude oil refinery factory.They both showed the fingerprinting character of mixed oil.The oil fingerprinting of the spilled oil (designated as ms1) collected from the port was significantly different from oil ky1 and oil sz1 and was with a lubricating oil fingerprint character.The identification result not only gave support for the spilled oil investigation,but also served as an example for studying spilled oil accidents.
基金Supported by CAS Knowledge Innovation Program (No. KZCX2-YW-203)
文摘Sedimentary basins in the Yellow Sea can be grouped tectonically into the North Yellow Sea Basin (NYSB), the northern basin of the South Yellow Sea (SYSNB) and the southern basin of the South Yellow Sea (SYSSB). The NYSB is connected to Anju Basin to the east. The SYSSB extends to Subei Basin to the west. The acoustic basement of basins in the North Yellow Sea and South Yellow Sea is disparate, having different stratigraphic evolution and oil accumulation features, even though they have been under the same stress regime since the Late Triassic. The acoustic basement of the NYSB features China-Korea Platform crystalline rocks, whereas those in the SYSNB and SYSSB are of the Paleozoic Yangtze Platform sedimentary layers or metamorphic rocks. Since the Late Mesozoic terrestrial strata in the eastern of the NYSB (West Korea Bay Basin) were discovered having industrial hydrocarbon accumulation, the oil potential in the Mesozoic strata in the west depression of the basin could be promising, although the petroleum exploration in the South Yellow Sea has made no break-through yet. New deep reflection data and several drilling wells have indicated the source rock of the Mesozoic in the basins of South Yellow Sea, and the Paleozoic platform marine facies in the SYSSB and Central Rise could be the other hosts of oil or natural gas. The Mesozoic hydrocarbon could be found in the Mesozoic of the foredeep basin in the SYSNB that bears potential hydrocarbon in thick Cretaceous strata, and so does the SYSSB where the same petroleum system exists to that of oil-bearing Subei Basin.
基金Project supported by the 100 Talents Program of the Chinese Academy of Sciences (No.2004407).
文摘Oil spills have become a serious problem in cold environments with the ever-increasing resource exploitation, transportation, storage, and accidental leakage of oil. Several techniques, including physical, chemical, and biological methods, are used to recover spilled oil from the environment. Bioremediation is a promising option for remediation since it is effective and economic in removing oil with less undue environmental damages. However, it is a relatively slow process in cold regions and the degree of success depends on a number of factors, including the properties and fate of oil spilled in cold environments, and the major microbial and environmental limitations of bioremediation. The microbial factors include bioavailability of hydrocarbons, mass transfer through the cell membrane, and metabolic limitations. As for the environmental limitations in the cold regions, the emphasis is on soil temperatures, freeze-thaw processes, oxygen and nutrients availability, toxicity, and electron acceptors. There have been several cases of success in the polar regions, particularly in the Arctic and sub-Arctic regions. However, the challenges and constraints for bioremediation in cold environments remain large.
基金Supported bythe National Natural Science Foundation of China projects ( NSFC-40136020 NSFC-40376033)the National +1 种基金Basic Research Priorities Programme (2001CB409703)the Key Project of Chinese Ministry of Education (No.01110)Shandong Nature Science
文摘The method has been established to calculate the environmental capacity (ECO), surplus environment capacity (SECO) of water with respect to marine petroleum hydrocarbons associated with oil (PHAOs) and the self-purification capacity (SPCO) of main self-purification process to PHAOs in the Jiaozhou Bay, China, according to the dynamic model for distribution of marine PHAOs among multiphase environments. The variation of concentration of PHAOs in the Jiaozhou Bay is well simulated by the dynamic model. Based on the model, the ECo, SECo of water with respect to PHAOs in the Jiaozhou Bay were calculated during the last 10 years under the first-class and second-class quality standard requirement, according to SPCO of main self-purification process to PHAOs. The results show that about 200 tons of PHAOs could be discharged into the Jiaozhou Bay for maintaining the first class seawater quality standard, and about 600 tons of PHAOs for the second class seawater quality standard later.
基金The paper was supported by the National Science Foundation of China projects(NSFC-40136020)Shandong Natural Science Foundation projects(L2000E01).
文摘The pollution condition of petroleum hydrocarbon (PH) was summarized in the Bohai Sea in this paper. The results showed that the mean concentration of PH was (25.7±13.6) mg/m3, varying from 4.4 to 64.8 mg/m3 in the survey sea area. Laizhou Bay and Bohai Bay have been contaminated badly inshore. The dynamic model for distribution of marine PH among multiphase environments in the Bohai Sea has been established. The environmental capacities (ECO) and surplus environmental capacities (SECO) of PH have been estimated in the Bohai Sea according to the dynamic model. The results showed that the ECo separately were about 29 169 t/a, 177 306 t/a and 298 446 t/a under the first, second and third, fourth class seawater quality standards requirement. And the ECO of Bohai Bay, Liaodong Bay, Laizhou Bay and Central Bohai Sea were about 5 255 t/a, 8 869 t/a, 4889 t/a and 10 156 t/a respectively under the first and second class seawater quality standards requirement.
基金Project (No. 40238059) supported by the National Natural Science Foundation of China
文摘Manghan Faulted Sag is an exploratory target area in Kailu Basin. In order to determine its exploration prospect, the effectiveness of its source rocks is evaluated by organic geochemical behavior analysis of the samples, and their distributions are predicted using trace integration seismic inversion technology. Studies on their organic matter abundance, type and maturity indicate that the source rocks in the Sag have great generating potentials. Furthermore, it is found that, based on the spatial distribution predication, the source rocks in the Sag are well developed. Therefore, the Sag has a promising prospect for exploration.
基金Supported by the National Natural Science Foundation of China and the SINOPEC.
文摘A general equation is proposed for predicting the liquid viscosities of petroleum fractions based on a generalized pseudocompound method in which pure hydrocarbons and undefined hydrocarbon mixtures or petroleum fractions are treated as a hypothetical pure substance called pseudocompound which is characterized only by a boiling point and a density. The equation is tested by using the liquid viscosities of the petroleum fractions of typical American crude oils and crude oils from major oil producing areas. Good agreement between the predicted and experimental viscosities for the petroleum fractions is obtained.
文摘A field work has been carried out to identify the occurrence of oil and oil products pollution in mangrove sediment from Red Sea of Yemen. The concentration of total petroleum hydrocarbons is from 700ng/g at Kamaran Island station to 400 ng/g at Al-Hodiedah station, and the total organic carbon (TOC) in samples ranges from 0.07% at Dhubab station to 0.03% at Kamaran Island station. This pollution is as a result of localized oil pollution and/or heavy ship traffic in the Red Sea and Gulf of Aden.