Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was ...Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was investigated from 250 to 850℃ in the fixed-bed continuous flow reactor. For the reforming of bio-oil, the yield of hydrogen of 80% was obtained at 750℃, and the maximum carbon conversion is nearly close to 95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogen yield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics of catalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition of carbon in the catalytic steam reforming process.展开更多
This review discussed the use of nano ZSM‐5 in naphtha catalytic cracking. The impact of nano ZSM‐5 on product selectivity, reaction conversion and catalyst lifetime were compared with micro‐sized ZSM‐5. The appli...This review discussed the use of nano ZSM‐5 in naphtha catalytic cracking. The impact of nano ZSM‐5 on product selectivity, reaction conversion and catalyst lifetime were compared with micro‐sized ZSM‐5. The application of nano ZSM‐5 not only increased the catalyst lifetime, but also gave more stability for light olefins selectivity. The effects of the reaction parameters of temperature and feedstock on the performance of nano ZSM‐5 were investigated, and showed that high temperature and linear alkanes as feedstock improved light olefin selectivity and conversion.展开更多
By means of molecular scale management, the technology of separating normal paraffins from naphtha through adsorption using 5A molecular sieves was studied with the purpose of optimizing the utilization of naphtha. Th...By means of molecular scale management, the technology of separating normal paraffins from naphtha through adsorption using 5A molecular sieves was studied with the purpose of optimizing the utilization of naphtha. The raw materials used in steam cracking and catalytic reforming processes could be allocated properly. During the adsorption process, the separation efficiency of the normal paraffins was above 99.9% with the purity of normal paraffins in the desorption oil exceeding 98.2%. With the use of the desorption oil as the feedstock of steam cracking, the ethylene yield increased from 29.7%-35.0% to 41.4%- 49.2% compared to that of the naphtha in the existing plant under similar operation conditions. The potential aromatic content of the raffinate oil rose from 30.6% to 43.5% compared to that in naphtha. The research octane number of the raffinate oil reached more than 85 with an increase of 20 units compared to that of naphtha, so the raffinate oil is more suitable for use as a blending component for high-octane clean gasoline.展开更多
On the basis of the reaction rules and its influencing factors of sulfur compounds in MIP naphtha, a correlation model for describing the correlation between mass fraction of sulfur in MIP naphtha, mass fraction of su...On the basis of the reaction rules and its influencing factors of sulfur compounds in MIP naphtha, a correlation model for describing the correlation between mass fraction of sulfur in MIP naphtha, mass fraction of sulfur in feedstock and volume fraction of olefin in naphtha was developed and the model's parameters were estimated. The residual error distribution and statistical study showed that the developed model was reasonable and reliable and able to predict the mass fraction of sulfur compounds in naphtha. The correlation model can provide theoretical guidance and operation base for adjusting process parameters to produce EURO IV gasoline by the MIP units. The model was validated by its application on the MIP unit of Qingdao Refining & Chemical Company. On this unit, the tail oil with low sulfur content obtained via hydrotreating gas oil was used as the feedstock and the olefin content of naphtha was reduced by promoting hydrogen transfer reaction through adjustment of process parameters. Thus, EURO IV clean gasoline was manufactured by this MIP unit.展开更多
In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped ki...In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped kinetics re-action network and has been proved to be quite effective in terms of industrial application. The primary objectives in-clude maximization of yield of the aromatics and minimization of the yield of heavy aromatics. Four reactor inlet tem-peratures, reaction pressure, and hydrogen-to-oil molar ratio are selected as the decision variables. A genetic algorithm, which is proposed by the authors and named as the neighborhood and archived genetic algorithm (NAGA), is applied to solve this multiobjective optimization problem. The relations between each decision variable and the two objectives are also proposed and used for choosing a suitable solution from the obtained Pareto set.展开更多
A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the n...A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.展开更多
Objective: A series of 2-benzylideneaminonaphthothiazoles were designed and synthesized incorporating the lipophilic naphthalene ring to render them more capable of penetrating various biomembranes. Methods: Schiff ...Objective: A series of 2-benzylideneaminonaphthothiazoles were designed and synthesized incorporating the lipophilic naphthalene ring to render them more capable of penetrating various biomembranes. Methods: Schiff bases were synthesized by the reaction of naphtha[1,2-d]thiazol-2-amine with various substituted aromatic aldehydes. 2-(2'-Hydroxy)ben- zylideneaminonaphthothiazole was converted to its Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) metal complexes upon treatment with metal salts in ethanol. All the compounds were evaluated for their antibacterial activities by paper disc diffusion method with Gram positive Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas aeruginosa bacteria. The minimum inhibitory concentrations of all the Schiff bases and metal complexes were determined by agar streak dilution method. Results: All the compounds moderately inhibited the growth of Cram positive and Gram negative bacteria. In the present study among all Schiff bases 2-(2'-hydroxy)benzylideneaminonaphthothiazole showed maximum inhibitory activity and among metal complexes Cu(Ⅱ) metal complex was found to be most potent. Conclusion: The results obtained validate the hypothesis that Schiff bases having substitution with halogens, hydroxyl group and nitro group at phenyl ring are required for the antibacterial activity while methoxy group at different positions in the aromatic ring has minimal role in the inhibitory activity. The results also indicated that the metal complexes are better antibacterial agents as compared to the Schiff bases.展开更多
Naphtha is an important raw material for manufacture of clean fuels and ethylene products. However, China is experiencing a serious imbalance between supply and demand of naphtha, due to its rapidly increasing car pop...Naphtha is an important raw material for manufacture of clean fuels and ethylene products. However, China is experiencing a serious imbalance between supply and demand of naphtha, due to its rapidly increasing car population and booming ethylene industry, the demand of which cannot be met by the domestic depleting crude oil resources. Focusing on alleviating the above-mentioned naphtha deficit, this paper puts forward an idea suggesting that China's limited naphtha resource should be used reasonably. Naphtha feedstocks with more potential aromatic content should be used in catalytic reforming process to produce clean fuel products, and those feedstocks with more paraffinic content should be used in ethylene production. Meanwhile, industry tests show that the low-valued naphtha byproduct from ethylene plants and the products of secondary processing units at refineries can also be applied so as to extend the naphtha supply for manufacture of cleaner fuels and ethylene derivatives.展开更多
Ethylene production by the thermal cracking of naphtha is an energy-intensive process (up to 40 GJ heat per tonne ethylene), leading to significant formation of coke and nitrogen oxide (NOx), along with 1,8- 2 kg ...Ethylene production by the thermal cracking of naphtha is an energy-intensive process (up to 40 GJ heat per tonne ethylene), leading to significant formation of coke and nitrogen oxide (NOx), along with 1,8- 2 kg of carbon dioxide (CO2) emission per kilogram of ethylene produced, We propose an alternative pro- cess for the redox oxy-cracking (ROC) of naphtha, In this two-step process, hydrogen (H2) from naphtha cracking is selectively comhusted by a redox catalyst with its lattice oxygen first, The redox catalyst is subsequently re-oxidized by air and releases heat, which is used to satisfy the heat requirement for the cracking reactions, This intensified process reduces parasitic energy consumption and CO2 and NOx emissions, Moreover, the formation of ethylene and propylene can he enhanced due to the selective com-bustion of H2, In this study, the ROC process is simulated with ASPEN Plus^R based on experimental data from recently developed redox catalysts, Compared with traditional naphtha cracking, the ROC process can provide up to 52% reduction in energy consumption and CO2 emissions, The upstream section of the process consumes approximately 67% less energy while producing 28% more ethylene and propylene for every kilogram of naphtha feedstock,展开更多
The development history and major technological innovations of the ultra-low pressure naphtha reforming technology with continuous catalyst regeneration in China were introduced.This technology had been adopted by the...The development history and major technological innovations of the ultra-low pressure naphtha reforming technology with continuous catalyst regeneration in China were introduced.This technology had been adopted by the 1.0 Mt/a CCR unit at the Guangzhou Company.The appropriate catalyst was selected to meet the demand of the unit capacity,the feedstock,and the product slate.The design parameters,including the reaction pressure,the octane number of C5+liquid product,the reaction temperature,the space velocity,the hydrogen/oil molar ratio,and the catalyst circulating rate,were chosen based on the study of process conditions and parameters.The commercial test results showed that the research octane number of C5+product reached 104 when the capacity of the CCR unit was 100%and 115%of the design value.The other technical targets attained or exceeded the expected value.展开更多
NH4Y zeolite was prepared through ion-exchange of NaY zeolite with an ammonium salt. Then LaY zeolite was obtained through a secondary ion-exchange of NHaY zeolite with a rare earth salt solution followed by calcinati...NH4Y zeolite was prepared through ion-exchange of NaY zeolite with an ammonium salt. Then LaY zeolite was obtained through a secondary ion-exchange of NHaY zeolite with a rare earth salt solution followed by calcination of the zeolite product. Dynamic adsorptive desulfurization of naphtha was conducted in the presence of the modified LaY zeolite, and the sulfur content of the treated naphtha samples was analyzed by microcoulometry. The test results showed that under dynamic conditions the LaY zeolite prepared through secondary ion-exchange of NH4Y zeolite, which was prepared using 1.0 mol/L ammonium salt, with the rare earth salt exhibited a better desulfurization efficiency. Furthermore, the LaY zeolite achieved a best desulfurization effect at an adsorption temperature of 45 ℃ and an adsorbent/oil ratio of 1:2.展开更多
A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to ...A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.展开更多
The technical features and commercial test results of flexible dual-riserfluidized catalytic cracking (FDFCC) process are presented for refiners to choose an efficientprocess to upgrade FCC naphtha and boost propylene...The technical features and commercial test results of flexible dual-riserfluidized catalytic cracking (FDFCC) process are presented for refiners to choose an efficientprocess to upgrade FCC naphtha and boost propylene production in a RFCC unit. The commercial testresults indicate that the olefin content of catalyti-cally cracked gasoline can be significantlyreduced to less than 20 v%, while sulfur content reduced by 15%-25% and RON increased by 0.5―2units in a RFCC unit. In addition, propylene yield and the production ratio of diesel to gasolinecan also be remarkably enhanced in the RFCC unit.展开更多
A qualitative and quantitative workplace assessment was carried out to determine naphtha exposure in a tyre manufacturing industry. A qualitative chemical health risk assessment was conducted to identify naphtha hazar...A qualitative and quantitative workplace assessment was carried out to determine naphtha exposure in a tyre manufacturing industry. A qualitative chemical health risk assessment was conducted to identify naphtha hazard at the workplace. Quantitative assessment using Portable VOC Monitor, Automatic Sampling Pump and personal air sampling pump was used to determine VOC concentrations, organic solvents, and individual air naphtha respectively. The risk rating of naphtha was estimated to be 5. The mean VOC concentration was in the range of 2.43 to 92.93 ppm. Repair area had the highest VOC concentration while the lowest was in the moulding area. Each work station had significant differences for VOC concentrations (p 〈 0.001). Laboratory analysis found various solvents including 2-methyl pentane, hexane, methyl cyclopentane, heptane, cyclohexane and toluene which were present in the liquid naphtha. Only xylene has been detected in the making and moulding areas with a range of 2 to 5 ppm. Meanwhile, the air naphtha concentrations of the exposed workers were significantly higher than those unexposed. The risk of naphtha exposure was qualitatively significant and not adequately controlled. Naphtha was detected in all work stations since it is the main solvent used. The "Repair Area" was significantly more contaminated than the other area.展开更多
The M/USY/Al2O3/kaolinite sulfur reduction additive systems containing vanadium were prepared by different methods. The influence of the preparation methods, the active constituent forerunners, the vanadium content an...The M/USY/Al2O3/kaolinite sulfur reduction additive systems containing vanadium were prepared by different methods. The influence of the preparation methods, the active constituent forerunners, the vanadium content and the type of molecular sieves on sulfur reduction of fluid catalytic cracking (FCC) gasoline were studied by a small fixed bed. The results showed that when FCC catalyst was blended with the sulfur reduction additives prepared by the special method at the ratio of 95:5, the relative sulfur reduction rate reached 35% and there was little influence on distribution of the products and quality of the gasoline. The XRD analysis indicated that the Y molecular sieve crystal structure in the additives prepared by the specific method retained integrity.展开更多
文摘Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was investigated from 250 to 850℃ in the fixed-bed continuous flow reactor. For the reforming of bio-oil, the yield of hydrogen of 80% was obtained at 750℃, and the maximum carbon conversion is nearly close to 95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogen yield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics of catalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition of carbon in the catalytic steam reforming process.
文摘This review discussed the use of nano ZSM‐5 in naphtha catalytic cracking. The impact of nano ZSM‐5 on product selectivity, reaction conversion and catalyst lifetime were compared with micro‐sized ZSM‐5. The application of nano ZSM‐5 not only increased the catalyst lifetime, but also gave more stability for light olefins selectivity. The effects of the reaction parameters of temperature and feedstock on the performance of nano ZSM‐5 were investigated, and showed that high temperature and linear alkanes as feedstock improved light olefin selectivity and conversion.
文摘By means of molecular scale management, the technology of separating normal paraffins from naphtha through adsorption using 5A molecular sieves was studied with the purpose of optimizing the utilization of naphtha. The raw materials used in steam cracking and catalytic reforming processes could be allocated properly. During the adsorption process, the separation efficiency of the normal paraffins was above 99.9% with the purity of normal paraffins in the desorption oil exceeding 98.2%. With the use of the desorption oil as the feedstock of steam cracking, the ethylene yield increased from 29.7%-35.0% to 41.4%- 49.2% compared to that of the naphtha in the existing plant under similar operation conditions. The potential aromatic content of the raffinate oil rose from 30.6% to 43.5% compared to that in naphtha. The research octane number of the raffinate oil reached more than 85 with an increase of 20 units compared to that of naphtha, so the raffinate oil is more suitable for use as a blending component for high-octane clean gasoline.
文摘On the basis of the reaction rules and its influencing factors of sulfur compounds in MIP naphtha, a correlation model for describing the correlation between mass fraction of sulfur in MIP naphtha, mass fraction of sulfur in feedstock and volume fraction of olefin in naphtha was developed and the model's parameters were estimated. The residual error distribution and statistical study showed that the developed model was reasonable and reliable and able to predict the mass fraction of sulfur compounds in naphtha. The correlation model can provide theoretical guidance and operation base for adjusting process parameters to produce EURO IV gasoline by the MIP units. The model was validated by its application on the MIP unit of Qingdao Refining & Chemical Company. On this unit, the tail oil with low sulfur content obtained via hydrotreating gas oil was used as the feedstock and the olefin content of naphtha was reduced by promoting hydrogen transfer reaction through adjustment of process parameters. Thus, EURO IV clean gasoline was manufactured by this MIP unit.
基金Supported by the National Natural Science Foundation of China (No.60421002).
文摘In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped kinetics re-action network and has been proved to be quite effective in terms of industrial application. The primary objectives in-clude maximization of yield of the aromatics and minimization of the yield of heavy aromatics. Four reactor inlet tem-peratures, reaction pressure, and hydrogen-to-oil molar ratio are selected as the decision variables. A genetic algorithm, which is proposed by the authors and named as the neighborhood and archived genetic algorithm (NAGA), is applied to solve this multiobjective optimization problem. The relations between each decision variable and the two objectives are also proposed and used for choosing a suitable solution from the obtained Pareto set.
文摘A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.
文摘Objective: A series of 2-benzylideneaminonaphthothiazoles were designed and synthesized incorporating the lipophilic naphthalene ring to render them more capable of penetrating various biomembranes. Methods: Schiff bases were synthesized by the reaction of naphtha[1,2-d]thiazol-2-amine with various substituted aromatic aldehydes. 2-(2'-Hydroxy)ben- zylideneaminonaphthothiazole was converted to its Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) metal complexes upon treatment with metal salts in ethanol. All the compounds were evaluated for their antibacterial activities by paper disc diffusion method with Gram positive Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas aeruginosa bacteria. The minimum inhibitory concentrations of all the Schiff bases and metal complexes were determined by agar streak dilution method. Results: All the compounds moderately inhibited the growth of Cram positive and Gram negative bacteria. In the present study among all Schiff bases 2-(2'-hydroxy)benzylideneaminonaphthothiazole showed maximum inhibitory activity and among metal complexes Cu(Ⅱ) metal complex was found to be most potent. Conclusion: The results obtained validate the hypothesis that Schiff bases having substitution with halogens, hydroxyl group and nitro group at phenyl ring are required for the antibacterial activity while methoxy group at different positions in the aromatic ring has minimal role in the inhibitory activity. The results also indicated that the metal complexes are better antibacterial agents as compared to the Schiff bases.
文摘Naphtha is an important raw material for manufacture of clean fuels and ethylene products. However, China is experiencing a serious imbalance between supply and demand of naphtha, due to its rapidly increasing car population and booming ethylene industry, the demand of which cannot be met by the domestic depleting crude oil resources. Focusing on alleviating the above-mentioned naphtha deficit, this paper puts forward an idea suggesting that China's limited naphtha resource should be used reasonably. Naphtha feedstocks with more potential aromatic content should be used in catalytic reforming process to produce clean fuel products, and those feedstocks with more paraffinic content should be used in ethylene production. Meanwhile, industry tests show that the low-valued naphtha byproduct from ethylene plants and the products of secondary processing units at refineries can also be applied so as to extend the naphtha supply for manufacture of cleaner fuels and ethylene derivatives.
基金This work was supported by the US National Science Foundation (CBET-1604605) and the Kenan Institute for Engineering, Technol-ogy and Science at North Carolina State University.
文摘Ethylene production by the thermal cracking of naphtha is an energy-intensive process (up to 40 GJ heat per tonne ethylene), leading to significant formation of coke and nitrogen oxide (NOx), along with 1,8- 2 kg of carbon dioxide (CO2) emission per kilogram of ethylene produced, We propose an alternative pro- cess for the redox oxy-cracking (ROC) of naphtha, In this two-step process, hydrogen (H2) from naphtha cracking is selectively comhusted by a redox catalyst with its lattice oxygen first, The redox catalyst is subsequently re-oxidized by air and releases heat, which is used to satisfy the heat requirement for the cracking reactions, This intensified process reduces parasitic energy consumption and CO2 and NOx emissions, Moreover, the formation of ethylene and propylene can he enhanced due to the selective com-bustion of H2, In this study, the ROC process is simulated with ASPEN Plus^R based on experimental data from recently developed redox catalysts, Compared with traditional naphtha cracking, the ROC process can provide up to 52% reduction in energy consumption and CO2 emissions, The upstream section of the process consumes approximately 67% less energy while producing 28% more ethylene and propylene for every kilogram of naphtha feedstock,
基金Financial support form the SINOPEC Research Program(No.107025)
文摘The development history and major technological innovations of the ultra-low pressure naphtha reforming technology with continuous catalyst regeneration in China were introduced.This technology had been adopted by the 1.0 Mt/a CCR unit at the Guangzhou Company.The appropriate catalyst was selected to meet the demand of the unit capacity,the feedstock,and the product slate.The design parameters,including the reaction pressure,the octane number of C5+liquid product,the reaction temperature,the space velocity,the hydrogen/oil molar ratio,and the catalyst circulating rate,were chosen based on the study of process conditions and parameters.The commercial test results showed that the research octane number of C5+product reached 104 when the capacity of the CCR unit was 100%and 115%of the design value.The other technical targets attained or exceeded the expected value.
文摘NH4Y zeolite was prepared through ion-exchange of NaY zeolite with an ammonium salt. Then LaY zeolite was obtained through a secondary ion-exchange of NHaY zeolite with a rare earth salt solution followed by calcination of the zeolite product. Dynamic adsorptive desulfurization of naphtha was conducted in the presence of the modified LaY zeolite, and the sulfur content of the treated naphtha samples was analyzed by microcoulometry. The test results showed that under dynamic conditions the LaY zeolite prepared through secondary ion-exchange of NH4Y zeolite, which was prepared using 1.0 mol/L ammonium salt, with the rare earth salt exhibited a better desulfurization efficiency. Furthermore, the LaY zeolite achieved a best desulfurization effect at an adsorption temperature of 45 ℃ and an adsorbent/oil ratio of 1:2.
文摘A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.
文摘The technical features and commercial test results of flexible dual-riserfluidized catalytic cracking (FDFCC) process are presented for refiners to choose an efficientprocess to upgrade FCC naphtha and boost propylene production in a RFCC unit. The commercial testresults indicate that the olefin content of catalyti-cally cracked gasoline can be significantlyreduced to less than 20 v%, while sulfur content reduced by 15%-25% and RON increased by 0.5―2units in a RFCC unit. In addition, propylene yield and the production ratio of diesel to gasolinecan also be remarkably enhanced in the RFCC unit.
文摘A qualitative and quantitative workplace assessment was carried out to determine naphtha exposure in a tyre manufacturing industry. A qualitative chemical health risk assessment was conducted to identify naphtha hazard at the workplace. Quantitative assessment using Portable VOC Monitor, Automatic Sampling Pump and personal air sampling pump was used to determine VOC concentrations, organic solvents, and individual air naphtha respectively. The risk rating of naphtha was estimated to be 5. The mean VOC concentration was in the range of 2.43 to 92.93 ppm. Repair area had the highest VOC concentration while the lowest was in the moulding area. Each work station had significant differences for VOC concentrations (p 〈 0.001). Laboratory analysis found various solvents including 2-methyl pentane, hexane, methyl cyclopentane, heptane, cyclohexane and toluene which were present in the liquid naphtha. Only xylene has been detected in the making and moulding areas with a range of 2 to 5 ppm. Meanwhile, the air naphtha concentrations of the exposed workers were significantly higher than those unexposed. The risk of naphtha exposure was qualitatively significant and not adequately controlled. Naphtha was detected in all work stations since it is the main solvent used. The "Repair Area" was significantly more contaminated than the other area.
文摘The M/USY/Al2O3/kaolinite sulfur reduction additive systems containing vanadium were prepared by different methods. The influence of the preparation methods, the active constituent forerunners, the vanadium content and the type of molecular sieves on sulfur reduction of fluid catalytic cracking (FCC) gasoline were studied by a small fixed bed. The results showed that when FCC catalyst was blended with the sulfur reduction additives prepared by the special method at the ratio of 95:5, the relative sulfur reduction rate reached 35% and there was little influence on distribution of the products and quality of the gasoline. The XRD analysis indicated that the Y molecular sieve crystal structure in the additives prepared by the specific method retained integrity.