Bioflotation represents one of the growing trends to enhance the selectivity of conventional flotation processes. It utilizes the micro-organisms to replace or to interact with the chemical reagents to increase the ga...Bioflotation represents one of the growing trends to enhance the selectivity of conventional flotation processes. It utilizes the micro-organisms to replace or to interact with the chemical reagents to increase the gap between surface properties of similar minerals and to enhance the separation selectivity. In this work, dolomite-phosphate separation was investigated using amphoteric collector (dodecyl-N-carboxyethyl-N-hyroxyethyl-imidazoline) in presence of bacteria. Two types of bacteria, Corynebacterium- diphtheriae-intermedius (CDI), and Pseudomonas aeruginosa (PA), were used. The collector-bacteria interaction was characterized by Fourier transform infra-red (FTIR), frothing height and Zeta potential. The results show that the collector-bacteria interaction improves the flotation selectivity. Although, the PA positively affects the separation results, the CDI cannot lower the MgO to less than 1%. A phosphate content of 0.7% MgO and 31.77% P205 with a recovery of 68% at pH 11, 3.0 kg/t amphoteric collector, 4× 10^7 cells of PA is obtained.展开更多
A laboratory lysimeter experiment was conducted to investigate the effects of forage corn (Zea rncbys L.) stalk application on the CO2 concentration in soil air and calcareous sodic soil reclamation. The experimenta...A laboratory lysimeter experiment was conducted to investigate the effects of forage corn (Zea rncbys L.) stalk application on the CO2 concentration in soil air and calcareous sodic soil reclamation. The experimental treatments tested were soil exchangeable sodium percentage (ESP) levels of 1, 11, and 19, added corn stalk contents of 0 to 36 g kg^-1, and incubation durations of 30 and 60 days. The experimental results indicated that corn stalk application and incubation significantly increased CO2 partial pressure in soil profile and lowered pH value in soil solution, subsequently increased native CaCO3 mineral dissolution and electrolyte concentration of soil solution, and finally significantly contributed to reduction on soil sodicity level. The reclamation efficiency of calcareous sodic soils increased with the added corn stalk. When corn stalks were added at the rates of 22 and 34 g kg^-1 into the soil with initial ESP of 19, its ESP value was decreased by 56% and 78%, respectively, after incubation of 60 days and the leaching of 6.5 pore volumes (about 48 L of percolation water) with distilled water. Therefore, crop stalk application and incubation could be used as a choice to reclaim moderate calcareous sodic soils or as a supplement of phytoremediation to improve reclamation efficiency.展开更多
Pilot scale column flotation studies were conducted on a low grade siliceous limestone ore. Silica content was reduced to less than 13g in the concentrate so that it became satisfactory for use in the paper or rubber ...Pilot scale column flotation studies were conducted on a low grade siliceous limestone ore. Silica content was reduced to less than 13g in the concentrate so that it became satisfactory for use in the paper or rubber industries. The limestone sample was crystalline and constituted primarily of calcite that contained quartz, feldspar, pyroxene, and biotite as gangue minerals. Quartz is the major silicate gangue whereas feldspar, pyroxene, and biotite exist in minor to trace quantities. Traces of pyrite were also observed within the sample. A reverse flotation process was adopted where the silicate gangue minerals were floated using two different commercial cationic collectors: Chem-750 F or Floatamine-D. The studies clearly suggest it is possible to produce a limestone concentrate assaying around 96-97% CaCO3 containing less than 1 % Si02. The effect of feed flow rate, percent solids, froth depth, and wash water on the grade and recovery of the CaC03 concentrate is discussed.展开更多
文摘Bioflotation represents one of the growing trends to enhance the selectivity of conventional flotation processes. It utilizes the micro-organisms to replace or to interact with the chemical reagents to increase the gap between surface properties of similar minerals and to enhance the separation selectivity. In this work, dolomite-phosphate separation was investigated using amphoteric collector (dodecyl-N-carboxyethyl-N-hyroxyethyl-imidazoline) in presence of bacteria. Two types of bacteria, Corynebacterium- diphtheriae-intermedius (CDI), and Pseudomonas aeruginosa (PA), were used. The collector-bacteria interaction was characterized by Fourier transform infra-red (FTIR), frothing height and Zeta potential. The results show that the collector-bacteria interaction improves the flotation selectivity. Although, the PA positively affects the separation results, the CDI cannot lower the MgO to less than 1%. A phosphate content of 0.7% MgO and 31.77% P205 with a recovery of 68% at pH 11, 3.0 kg/t amphoteric collector, 4× 10^7 cells of PA is obtained.
基金Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of Chinathe United States-Israel Binational Agricultural Research and Development Fund (No.452420)the Program for Changjiang Scholars and Innovative Research Team in University, China (No.IRT0657)
文摘A laboratory lysimeter experiment was conducted to investigate the effects of forage corn (Zea rncbys L.) stalk application on the CO2 concentration in soil air and calcareous sodic soil reclamation. The experimental treatments tested were soil exchangeable sodium percentage (ESP) levels of 1, 11, and 19, added corn stalk contents of 0 to 36 g kg^-1, and incubation durations of 30 and 60 days. The experimental results indicated that corn stalk application and incubation significantly increased CO2 partial pressure in soil profile and lowered pH value in soil solution, subsequently increased native CaCO3 mineral dissolution and electrolyte concentration of soil solution, and finally significantly contributed to reduction on soil sodicity level. The reclamation efficiency of calcareous sodic soils increased with the added corn stalk. When corn stalks were added at the rates of 22 and 34 g kg^-1 into the soil with initial ESP of 19, its ESP value was decreased by 56% and 78%, respectively, after incubation of 60 days and the leaching of 6.5 pore volumes (about 48 L of percolation water) with distilled water. Therefore, crop stalk application and incubation could be used as a choice to reclaim moderate calcareous sodic soils or as a supplement of phytoremediation to improve reclamation efficiency.
文摘Pilot scale column flotation studies were conducted on a low grade siliceous limestone ore. Silica content was reduced to less than 13g in the concentrate so that it became satisfactory for use in the paper or rubber industries. The limestone sample was crystalline and constituted primarily of calcite that contained quartz, feldspar, pyroxene, and biotite as gangue minerals. Quartz is the major silicate gangue whereas feldspar, pyroxene, and biotite exist in minor to trace quantities. Traces of pyrite were also observed within the sample. A reverse flotation process was adopted where the silicate gangue minerals were floated using two different commercial cationic collectors: Chem-750 F or Floatamine-D. The studies clearly suggest it is possible to produce a limestone concentrate assaying around 96-97% CaCO3 containing less than 1 % Si02. The effect of feed flow rate, percent solids, froth depth, and wash water on the grade and recovery of the CaC03 concentrate is discussed.