Hydroxyapatite coatings were directly prepared on anodized titanium by electro-deposition method in a modified simulated body fluid.The configuration,structure and bioactivity of the coating were investigated with sca...Hydroxyapatite coatings were directly prepared on anodized titanium by electro-deposition method in a modified simulated body fluid.The configuration,structure and bioactivity of the coating were investigated with scanning electron microscopy(SEM),X-ray diffraction analyzer(XRD)and Fourier transform infrared spectros-copy(FTIR)techniques.The results demonstrated that pure and homogeneous hydroxyapatite coating can be obtained without any post-treatment.The prepared coating showed good bioactivity in simulated body fluid(SBF).The time required for a fully covered dense hydroxyapatite coatings was 4 days immersion in SBF.展开更多
The biodegradability and biocompatibility of porous Mg-2Zn(mass fraction, %) scaffolds coated with nano hydroxyapatite(HAP) were investigated. The nano HAP coating on Mg-2Zn scaffolds was prepared by the pulse ele...The biodegradability and biocompatibility of porous Mg-2Zn(mass fraction, %) scaffolds coated with nano hydroxyapatite(HAP) were investigated. The nano HAP coating on Mg-2Zn scaffolds was prepared by the pulse electrodeposition method. The as-deposited scaffolds were then post-treated with alkaline solution to improve the biodegradation behavior and biocompatibility for implant applications. The microstructure and composition of scaffold and nano HAP coating, as well as their degradation and cytotoxicity behavior in simulated body fluid(SBF) were investigated. The post-treated coating is composed of needle-like HAP with the diameter less than 100 nm developed almost perpendicularly to the substrate, which exhibits a similar composition to natural bone. It is found that the products of immersion in SBF are identified to be HAP,(Ca,Mg)3(PO4)2 and Mg(OH)2. The bioactivity, biocompatibility and cell viabilities for the as-coated and post-treated scaffold extracts are higher than those for the uncoated scaffold. MG63 cells are found to adhere and proliferate on the surface of the as-coated and post-treated scaffolds, making it a promising choice for medical application. The results show that the pulse electrodeposition of nano HAP coating and alkaline treatment is a useful approach to improve the biodegradability and bioactivity of porous Mg-Zn scaffolds.展开更多
Application of lime or gypsum is a common agricultural practice to ameliorate soils with low pH which prohibits crop production. Its integrated effect on soil properties in a red soil derived from Quaternary red clay ...Application of lime or gypsum is a common agricultural practice to ameliorate soils with low pH which prohibits crop production. Its integrated effect on soil properties in a red soil derived from Quaternary red clay in Southeast China is discussed in this paper. Application of gypsum in the topsoil without leaching raised soil pH and promoted the production of soil NH 4, but lime addition had a contrary effect. Generally, application of lime and/or gypsum has little effect on soil electrical properties. Gypsum had a little effect on soil exchange complex and its effect went down to 30 cm in depth. The effect of lime reached only to 5 cm below its application layer. With leaching, Ca transferred from top soil to subsoil and decreased exchangeable Al in subsoil. Gypsum application led to a sharp decrease in soil exchangeable Mg but had no effect on K.展开更多
Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(...Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(SiC) paper, acid etching and alkali treatment were employed to produce either irregularly rough surface or micro-porous surface roughness. X-ray diffractometry(XRD), scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDX) attached to SEM were used to characterize surface structure and the Ca-P coatings. Effects of the above surface treatments on the surface morphology, apatite forming ability were systematically investigated. Results indicate that all the above surface treatments increase the apatite forming ability of TiNi alloys in varying degrees when soaked in simulated body fluid(SBF). More apatite coatings formed on TiNi samples sintered at 1050℃ and 1100℃ due to their high porosity and pure TiNi phase that is beneficial to heterogeneous nucleation. Furthermore, more uniform apatite was fabricated on the sample sintered from the mixture of Ni and Ti powders.展开更多
Hepatic artery pseudoaneurysm(HAP) is a very rare disease but in cases of complication,there is a very high mortality.The most common cause of HAP is iatrogenic trauma such as liver biopsy,transhepatic biliary drainag...Hepatic artery pseudoaneurysm(HAP) is a very rare disease but in cases of complication,there is a very high mortality.The most common cause of HAP is iatrogenic trauma such as liver biopsy,transhepatic biliary drainage,cholecystectomy and hepatectomy.HAP may also occur with complications such as infections or inflammation associated with septic emboli.HAP has been reported rarely in patients with acute pancreatitis.As far as we are aware,there is no report of a case caused by acute idiopathic pancreatitis,particularly.We report a case of HAP caused by acute idiopathic pancreatitis which developed in a 61-year-old woman.The woman initially presented with acute pancreatitis due to unknown cause.After conservative management,her symptoms seemed to have improved.But eight days after admission,abdominal pain abruptly became worse again.Abdominal computed tomography(CT) was rechecked and it detected a new HAP that was not seen in a previous abdominal CT.Endoscopic retrograde cholangiopancreatography(ERCP) was performed because of a suspicion of hemobilia as a cause of aggravated abdominal pain.ERCP confirmed hemobilia by observing fresh blood clots at the opening of the ampulla and several filling defects in the distal common bile duct on cholangiogram.Without any particular treatment such as embolization or surgical ligation,HAP thrombosed spontaneously.Three months after discharge,abdominal CT demonstrated that HAP in the left lateral segment had disappeared.展开更多
We herein report a gossypiboma resulting from a retained surgical swab, which had been left in peritoneum for 20years after appendectomy. CT revealed a cystic mass with a calcified reticulate rind. Subsequent surgery ...We herein report a gossypiboma resulting from a retained surgical swab, which had been left in peritoneum for 20years after appendectomy. CT revealed a cystic mass with a calcified reticulate rind. Subsequent surgery and pathological examination showed a gossypiboma. A simple experiment, using a barium-soaked surgical swab demonstrating similar CT appearance, supported our postulation that calcium deposition on the reticulated fibers of a surgical swab could generate such a characteristic 'calcified reticulate rind' sign. We believe that identification of this CT sign facilitates the diagnosis of gossypibomas.展开更多
Apatite coating with nanobelt structure was fabricated on single crystal silicon by a two-step method of electrodeposition at 1.0-2.0 mA/cm2 with DC power and vapor-thermal treatment(VTT) at 150-180℃ for 6 h over alk...Apatite coating with nanobelt structure was fabricated on single crystal silicon by a two-step method of electrodeposition at 1.0-2.0 mA/cm2 with DC power and vapor-thermal treatment(VTT) at 150-180℃ for 6 h over alkali medium.Scanning electron microscopy(SEM),X-ray diffractometry(XRD),and electron diffraction spectrometry(EDS) were employed to investigate the compositions and morphologies of specimens before or after vapor-thermal treatment.The results demonstrate that nanobelt crystals of coating,0.5-2 μm in width,100 nm in thickness,and 6-10 μm in length,are Ca-deficient apatite(CDA) with a mole ratio of Ca to P approximately of 1.60,which shows similarity of the nanobelt coating to inorganic phase in composition and to collagen in dimension appearing in human hard tissue.Induced nucleation and growth of bone-like apatite were observed on the nanobelt after soaking in a simulated body fluid(SBF) for 6 h and for 3 d,respectively,identifying that nanobelt has good ability for induction of bone-like apatite in SBF.展开更多
In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m se...In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m section, in the conventional test oil obtained 6 t/d industrial oil flow. The surface viscosity is 390 mPa. s (50 ℃). The marine deposit of Carboniferous are deep oil source rocks and high-quality reservoir. Magma volcanic activity provides the basis for volcanic reservoir development and distribution. The weathering crust and secondary cracks developed volcanic tuff by strong rock weathering and dissolution of organic acids which has become top quality reservoir. Deep Permian oil-gas migrated and accumulated to high parts along Hong-Che fault belt and stratigraphic unconformity stripping. Permian and Triassic volcanic rocks or dense mudstone sedimentary cover as a regional seal for the late Carboniferous oil-gas to save critically. The seismic pre-stack time migration processing technologies for the problem of poor inner structures of Carboniferous were developed. Response of volcanic rock seismic and logging are obvious. The application imaging logging and nuclear magnetic technology achieved the qualitative identification and quantification of fracture description.展开更多
A bone-like apatite layer consisting of nano-crystals of apatite phase was prepared on the surface of Ti- 25Nb-2Zr alloy by chemical biomimetic growth method. TiNbZr alloy specimens were first oxidized at 500 ℃ for 2...A bone-like apatite layer consisting of nano-crystals of apatite phase was prepared on the surface of Ti- 25Nb-2Zr alloy by chemical biomimetic growth method. TiNbZr alloy specimens were first oxidized at 500 ℃ for 2 h in the air. Then, they were immersed in 40 ℃ saturated NazHPO4 solution for 15 h and 25 ℃ saturated Ca (OH)2 solution for 8 h in turn for pre-calcification. The pre-calcified specimens were immersed in modified simulated body fluid up to 15 d for biomimetic growth. After common oxidization, amorphous titania and anatase were detected on the specimen surface. Except for the substantial amount of calcium and phosphorus, no new phase appeared on the pre-calcified specimens. After the coating process, it was found that the (002) orientation was the preferred orientation during the growing period of hydroxyapatite. The inorganic composition and structure of the coating are very similar to those of human thigh bone, which will be advantageous for its application as biomedical material.展开更多
Magnesium and its alloys have attracted great attention as biocompatible and degradable biomaterials recent years.But their corrosion rate has been proved to be too high,which limits their biomedical application great...Magnesium and its alloys have attracted great attention as biocompatible and degradable biomaterials recent years.But their corrosion rate has been proved to be too high,which limits their biomedical application greatly.In order to improve the corrosion resistance,nano-fluoridated apatite(FA) coating was prepared on ZK60 magnesium alloy by a simple chemical conversion method.The FA coating showed a needle-like morphology.The polarization curves and EIS plots indicated that the FA coating improved the corrosion potential by 125 mV and doubled the polarization resistance of the magnesium alloy,meanwhile decreasing the corrosion current by two orders of magnitude of the substrate in simulated body fluid.The MTT assay indicated good cytocompatibility of L-929 cells with the fluoridated apatite coated magnesium alloy.展开更多
基金Supported by the Young Scholars Fund of Beijing University of Chemical Technology(QN0713)
文摘Hydroxyapatite coatings were directly prepared on anodized titanium by electro-deposition method in a modified simulated body fluid.The configuration,structure and bioactivity of the coating were investigated with scanning electron microscopy(SEM),X-ray diffraction analyzer(XRD)and Fourier transform infrared spectros-copy(FTIR)techniques.The results demonstrated that pure and homogeneous hydroxyapatite coating can be obtained without any post-treatment.The prepared coating showed good bioactivity in simulated body fluid(SBF).The time required for a fully covered dense hydroxyapatite coatings was 4 days immersion in SBF.
文摘The biodegradability and biocompatibility of porous Mg-2Zn(mass fraction, %) scaffolds coated with nano hydroxyapatite(HAP) were investigated. The nano HAP coating on Mg-2Zn scaffolds was prepared by the pulse electrodeposition method. The as-deposited scaffolds were then post-treated with alkaline solution to improve the biodegradation behavior and biocompatibility for implant applications. The microstructure and composition of scaffold and nano HAP coating, as well as their degradation and cytotoxicity behavior in simulated body fluid(SBF) were investigated. The post-treated coating is composed of needle-like HAP with the diameter less than 100 nm developed almost perpendicularly to the substrate, which exhibits a similar composition to natural bone. It is found that the products of immersion in SBF are identified to be HAP,(Ca,Mg)3(PO4)2 and Mg(OH)2. The bioactivity, biocompatibility and cell viabilities for the as-coated and post-treated scaffold extracts are higher than those for the uncoated scaffold. MG63 cells are found to adhere and proliferate on the surface of the as-coated and post-treated scaffolds, making it a promising choice for medical application. The results show that the pulse electrodeposition of nano HAP coating and alkaline treatment is a useful approach to improve the biodegradability and bioactivity of porous Mg-Zn scaffolds.
文摘Application of lime or gypsum is a common agricultural practice to ameliorate soils with low pH which prohibits crop production. Its integrated effect on soil properties in a red soil derived from Quaternary red clay in Southeast China is discussed in this paper. Application of gypsum in the topsoil without leaching raised soil pH and promoted the production of soil NH 4, but lime addition had a contrary effect. Generally, application of lime and/or gypsum has little effect on soil electrical properties. Gypsum had a little effect on soil exchange complex and its effect went down to 30 cm in depth. The effect of lime reached only to 5 cm below its application layer. With leaching, Ca transferred from top soil to subsoil and decreased exchangeable Al in subsoil. Gypsum application led to a sharp decrease in soil exchangeable Mg but had no effect on K.
基金Project(51274247) supported by the National Natural Science Foundation of ChinaProject(2014zzts177) support by the Fundamental Research Funds for the Central Universities,China
文摘Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(SiC) paper, acid etching and alkali treatment were employed to produce either irregularly rough surface or micro-porous surface roughness. X-ray diffractometry(XRD), scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDX) attached to SEM were used to characterize surface structure and the Ca-P coatings. Effects of the above surface treatments on the surface morphology, apatite forming ability were systematically investigated. Results indicate that all the above surface treatments increase the apatite forming ability of TiNi alloys in varying degrees when soaked in simulated body fluid(SBF). More apatite coatings formed on TiNi samples sintered at 1050℃ and 1100℃ due to their high porosity and pure TiNi phase that is beneficial to heterogeneous nucleation. Furthermore, more uniform apatite was fabricated on the sample sintered from the mixture of Ni and Ti powders.
文摘Hepatic artery pseudoaneurysm(HAP) is a very rare disease but in cases of complication,there is a very high mortality.The most common cause of HAP is iatrogenic trauma such as liver biopsy,transhepatic biliary drainage,cholecystectomy and hepatectomy.HAP may also occur with complications such as infections or inflammation associated with septic emboli.HAP has been reported rarely in patients with acute pancreatitis.As far as we are aware,there is no report of a case caused by acute idiopathic pancreatitis,particularly.We report a case of HAP caused by acute idiopathic pancreatitis which developed in a 61-year-old woman.The woman initially presented with acute pancreatitis due to unknown cause.After conservative management,her symptoms seemed to have improved.But eight days after admission,abdominal pain abruptly became worse again.Abdominal computed tomography(CT) was rechecked and it detected a new HAP that was not seen in a previous abdominal CT.Endoscopic retrograde cholangiopancreatography(ERCP) was performed because of a suspicion of hemobilia as a cause of aggravated abdominal pain.ERCP confirmed hemobilia by observing fresh blood clots at the opening of the ampulla and several filling defects in the distal common bile duct on cholangiogram.Without any particular treatment such as embolization or surgical ligation,HAP thrombosed spontaneously.Three months after discharge,abdominal CT demonstrated that HAP in the left lateral segment had disappeared.
文摘We herein report a gossypiboma resulting from a retained surgical swab, which had been left in peritoneum for 20years after appendectomy. CT revealed a cystic mass with a calcified reticulate rind. Subsequent surgery and pathological examination showed a gossypiboma. A simple experiment, using a barium-soaked surgical swab demonstrating similar CT appearance, supported our postulation that calcium deposition on the reticulated fibers of a surgical swab could generate such a characteristic 'calcified reticulate rind' sign. We believe that identification of this CT sign facilitates the diagnosis of gossypibomas.
基金Project(50702020) supported by the National Natural Science Foundation of China
文摘Apatite coating with nanobelt structure was fabricated on single crystal silicon by a two-step method of electrodeposition at 1.0-2.0 mA/cm2 with DC power and vapor-thermal treatment(VTT) at 150-180℃ for 6 h over alkali medium.Scanning electron microscopy(SEM),X-ray diffractometry(XRD),and electron diffraction spectrometry(EDS) were employed to investigate the compositions and morphologies of specimens before or after vapor-thermal treatment.The results demonstrate that nanobelt crystals of coating,0.5-2 μm in width,100 nm in thickness,and 6-10 μm in length,are Ca-deficient apatite(CDA) with a mole ratio of Ca to P approximately of 1.60,which shows similarity of the nanobelt coating to inorganic phase in composition and to collagen in dimension appearing in human hard tissue.Induced nucleation and growth of bone-like apatite were observed on the nanobelt after soaking in a simulated body fluid(SBF) for 6 h and for 3 d,respectively,identifying that nanobelt has good ability for induction of bone-like apatite in SBF.
基金National Planed Major S&T Projects(No.2011ZX05002-002)Scientific Research Project of Sinopec(No.P03011)Key Technology Tacking Project,Shengli Oilfield Company,Sinopec(No.YKK0808)
文摘In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m section, in the conventional test oil obtained 6 t/d industrial oil flow. The surface viscosity is 390 mPa. s (50 ℃). The marine deposit of Carboniferous are deep oil source rocks and high-quality reservoir. Magma volcanic activity provides the basis for volcanic reservoir development and distribution. The weathering crust and secondary cracks developed volcanic tuff by strong rock weathering and dissolution of organic acids which has become top quality reservoir. Deep Permian oil-gas migrated and accumulated to high parts along Hong-Che fault belt and stratigraphic unconformity stripping. Permian and Triassic volcanic rocks or dense mudstone sedimentary cover as a regional seal for the late Carboniferous oil-gas to save critically. The seismic pre-stack time migration processing technologies for the problem of poor inner structures of Carboniferous were developed. Response of volcanic rock seismic and logging are obvious. The application imaging logging and nuclear magnetic technology achieved the qualitative identification and quantification of fracture description.
文摘A bone-like apatite layer consisting of nano-crystals of apatite phase was prepared on the surface of Ti- 25Nb-2Zr alloy by chemical biomimetic growth method. TiNbZr alloy specimens were first oxidized at 500 ℃ for 2 h in the air. Then, they were immersed in 40 ℃ saturated NazHPO4 solution for 15 h and 25 ℃ saturated Ca (OH)2 solution for 8 h in turn for pre-calcification. The pre-calcified specimens were immersed in modified simulated body fluid up to 15 d for biomimetic growth. After common oxidization, amorphous titania and anatase were detected on the specimen surface. Except for the substantial amount of calcium and phosphorus, no new phase appeared on the pre-calcified specimens. After the coating process, it was found that the (002) orientation was the preferred orientation during the growing period of hydroxyapatite. The inorganic composition and structure of the coating are very similar to those of human thigh bone, which will be advantageous for its application as biomedical material.
基金supported by the Program for Young Excellent Talents in Tongji University (Grant No. 2009KJ003)"Chen Guang" project(Grant No. 10CG21) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation
文摘Magnesium and its alloys have attracted great attention as biocompatible and degradable biomaterials recent years.But their corrosion rate has been proved to be too high,which limits their biomedical application greatly.In order to improve the corrosion resistance,nano-fluoridated apatite(FA) coating was prepared on ZK60 magnesium alloy by a simple chemical conversion method.The FA coating showed a needle-like morphology.The polarization curves and EIS plots indicated that the FA coating improved the corrosion potential by 125 mV and doubled the polarization resistance of the magnesium alloy,meanwhile decreasing the corrosion current by two orders of magnitude of the substrate in simulated body fluid.The MTT assay indicated good cytocompatibility of L-929 cells with the fluoridated apatite coated magnesium alloy.