In recent years, great attention has been paid to oil and gas exploration in the Carboniferous-Permian strata of the Bohaiwan basin, especially the Carboniferous-Permian marine transgression, using data from drilling,...In recent years, great attention has been paid to oil and gas exploration in the Carboniferous-Permian strata of the Bohaiwan basin, especially the Carboniferous-Permian marine transgression, using data from drilling, outcrops and carbonate acid-insoluble residue experiments together with the tectonic evo- lutionary history of the peripheral orogenic zones of the North China plate and the Tan-Lu fault zones. The .';tudy concludes that marine transgressions took place on six occasions during Carboniferous-Perm- ian time in the Jiyang Depression. The marine transgressions were concentrated in the Late Carbonifer- ous: two marine transgressions occurred in the early Late Carboniferous, and the scale of the first was smaller and the time was shorter than those of the second. The other four marine transgressions hap- pened in the late Late Carboniferous, the first and the fourth of which were larger in scale and longer in time than the second and the third. The seawater came from the Jiaobei area, the eastward part of the Qinling-Dabie residual sea basin, and invaded progressively as a planar flow from south to north and from east to west. These findings have great significance for thorough analysis of the sedimentary characteristics and evolution of the Carboniferous-Permian strata in the livang Denression.展开更多
We report paleomagnetic results from the Late Carboniferous-Late Permian strata in eastern Tibet (China), and aim to clarify the tectonic and paleogeographic evolution of the northern Qiangtang-Qamdo block, which is t...We report paleomagnetic results from the Late Carboniferous-Late Permian strata in eastern Tibet (China), and aim to clarify the tectonic and paleogeographic evolution of the northern Qiangtang-Qamdo block, which is the key to the study of plate boundary between the Gondwanaland and the Eurasia during the late Paleozoic. Two hundred and nineteen samples-including limestone, muddy siltstone, basalt, lava, and tuff-were collected at 24 sites in the Upper Carboniferous and Middle-Upper Permian successions. A systematic study of rock magnetism and paleomagnetism yields three reliable paleomagnetic pole positions. Both hematite and magnetite occurred in the Late Carboniferous limestone samples. The demagnetization curve shows a characteristic double-component, with the remanent magnetization (ChRM) exhibiting a positive polarity (negative inclination). In the Late Permian limestone, tuff, and basalt, magnetic information were recorded primarily in magnetite, although a small fraction of them was found in hematite in basalt. The demagnetization curve illustrates a double or single component, with the ChRM showing a negative polarity (positive inclination), which has passed the classic fold test successfully. The single polarity features of the ChRM directions of the Late Carboniferous and Middle-Late Permian rocks are respectively related to the Kiaman positive and reversed polarities under the stratigraphic coordinates. This, in turn, indicates that both ChRMs directions represent the original remanence directions. By comparison with the previously published paleomagnetic results from the late Paleozoic rocks in the northern Qiangtang Range, we suggest that: (1) Qamdo and northern Qiangtang block were independent of each other during the Late Carboniferous to the Early Permian periods. The north Lancangjiang ocean basin between the two blocks may have closed before the Middle Permian and been involved in the continent-continent collision stage in the Late Permian-Early Triassic periods. (2) The northern Qiangtang-Qamdo Block paleogeographically was situated at low to intermediate latitudes in the Southern Hemisphere in the Late Carboniferous-Late Permian periods, and began to displace northward in the Early Triassic, with an amount of more than 5000 km northward transport from its current location.展开更多
基金sponsored by the National Science and Technology Major Project of China (No.2011ZX05008)
文摘In recent years, great attention has been paid to oil and gas exploration in the Carboniferous-Permian strata of the Bohaiwan basin, especially the Carboniferous-Permian marine transgression, using data from drilling, outcrops and carbonate acid-insoluble residue experiments together with the tectonic evo- lutionary history of the peripheral orogenic zones of the North China plate and the Tan-Lu fault zones. The .';tudy concludes that marine transgressions took place on six occasions during Carboniferous-Perm- ian time in the Jiyang Depression. The marine transgressions were concentrated in the Late Carbonifer- ous: two marine transgressions occurred in the early Late Carboniferous, and the scale of the first was smaller and the time was shorter than those of the second. The other four marine transgressions hap- pened in the late Late Carboniferous, the first and the fourth of which were larger in scale and longer in time than the second and the third. The seawater came from the Jiaobei area, the eastward part of the Qinling-Dabie residual sea basin, and invaded progressively as a planar flow from south to north and from east to west. These findings have great significance for thorough analysis of the sedimentary characteristics and evolution of the Carboniferous-Permian strata in the livang Denression.
基金supported by the National Natural Science Foundation of China (Grant Nos.41074045 & 41174045)the China Geology Survey Bureau Program (Grant No.1212010610102)the Special Key Subject Funds of Colleges and Universities in Shaanxi Province (Grant No.081802)
文摘We report paleomagnetic results from the Late Carboniferous-Late Permian strata in eastern Tibet (China), and aim to clarify the tectonic and paleogeographic evolution of the northern Qiangtang-Qamdo block, which is the key to the study of plate boundary between the Gondwanaland and the Eurasia during the late Paleozoic. Two hundred and nineteen samples-including limestone, muddy siltstone, basalt, lava, and tuff-were collected at 24 sites in the Upper Carboniferous and Middle-Upper Permian successions. A systematic study of rock magnetism and paleomagnetism yields three reliable paleomagnetic pole positions. Both hematite and magnetite occurred in the Late Carboniferous limestone samples. The demagnetization curve shows a characteristic double-component, with the remanent magnetization (ChRM) exhibiting a positive polarity (negative inclination). In the Late Permian limestone, tuff, and basalt, magnetic information were recorded primarily in magnetite, although a small fraction of them was found in hematite in basalt. The demagnetization curve illustrates a double or single component, with the ChRM showing a negative polarity (positive inclination), which has passed the classic fold test successfully. The single polarity features of the ChRM directions of the Late Carboniferous and Middle-Late Permian rocks are respectively related to the Kiaman positive and reversed polarities under the stratigraphic coordinates. This, in turn, indicates that both ChRMs directions represent the original remanence directions. By comparison with the previously published paleomagnetic results from the late Paleozoic rocks in the northern Qiangtang Range, we suggest that: (1) Qamdo and northern Qiangtang block were independent of each other during the Late Carboniferous to the Early Permian periods. The north Lancangjiang ocean basin between the two blocks may have closed before the Middle Permian and been involved in the continent-continent collision stage in the Late Permian-Early Triassic periods. (2) The northern Qiangtang-Qamdo Block paleogeographically was situated at low to intermediate latitudes in the Southern Hemisphere in the Late Carboniferous-Late Permian periods, and began to displace northward in the Early Triassic, with an amount of more than 5000 km northward transport from its current location.