Rock burst is one of the most catastrophic dynamic hazards in coal mining. A static and dynamic stresses superposition-based(SDSS-based) risk evaluation method of rock burst was proposed to pre-evaluate rock burst ris...Rock burst is one of the most catastrophic dynamic hazards in coal mining. A static and dynamic stresses superposition-based(SDSS-based) risk evaluation method of rock burst was proposed to pre-evaluate rock burst risk. Theoretical basis of this method is the stress criterion incurring rock burst and rock burst risk is evaluated according to the closeness degree of the total stress(due to the superposition of static stress in the coal and dynamic stress induced by tremors) with the critical stress. In addition, risk evaluation criterion of rock burst was established by defining the "Satisfaction Degree" of static stress. Furthermore,the method was used to pre-evaluate rock burst risk degree and prejudge endangered area of an insular longwall face in Nanshan Coal Mine in China. Results show that rock burst risk is moderate at advance extent of 97 m, strong at advance extent of 97-131 m,and extremely strong(i.e. inevitable to occur) when advance extent exceeds 131 m(mining is prohibited in this case). The section of two gateways whose floor abuts 15-3 coal seam is a susceptible area prone to rock burst. Evaluation results were further compared with rock bursts and tremors detected by microseismic monitoring. Comparison results indicate that evaluation results are consistent with microseismic monitoring, which proves the method's feasibility.展开更多
Acid mine drainage (AMD) that releases highly acidic, sulfate and metals-rich drainage is a serious environmental problem in coal mining areas in China. In order to study the effect of using loess for preventing AMD...Acid mine drainage (AMD) that releases highly acidic, sulfate and metals-rich drainage is a serious environmental problem in coal mining areas in China. In order to study the effect of using loess for preventing AMD and controlling heavy metals contamination from coal waste, the column leaching tests were conducted. The results come from experiment data analyses show that the loess can effectively immobilize cadmium, copper, iron, lead and zinc in AMD from coal waste, increase pH value, and decrease Eh, EC, and 8024- concentrations of AMD from coal waste. The oxidation of sulfide in coal waste is prevented by addition of the loess, which favors the generation and adsorption of the alkalinity, the decrease of the population of Thiobacillusferrooxidans, the heavy metals immobilization by precipitation of sulfide and carbonate through biological sul- fate reduction inside the column, and the halt of the oxidation process of sulfide through iron coating on the surface of sulfide in coal waste. The loess can effectively prevent AMD and heavy metals contamination from coal waste in in-situ treatment systems.展开更多
Mining activities produced a lot of abandoned mine land. This paper introduced the theoretical and technical progress of ecological restoration of surface coal mines, mining subsidence land and coal waste piles in Chi...Mining activities produced a lot of abandoned mine land. This paper introduced the theoretical and technical progress of ecological restoration of surface coal mines, mining subsidence land and coal waste piles in China and discussed some key problems for research in the future. Ecological restoration of abandoned mine land was related to many disciplines, and multi-disciplinary theories might make great contributes to it. Some practical techniques of ecological restoration of abandoned mine land and their demonstration bases in China were introduced. Ecosystem succession process and mechanism, structure optimization of land use and new technologies of ecological restoration of abandoned mine land should be focused on in research activities.展开更多
基金Project(51174285)supported by the National Natural Science Foundation of China and the Shenhua Group Corporation Limited,ChinaProject(CXZZ12_0949)supported by the Research and Innovation Project for College Graduates of Jiangsu Province,ChinaProject(SZBF2011-6-B35)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Rock burst is one of the most catastrophic dynamic hazards in coal mining. A static and dynamic stresses superposition-based(SDSS-based) risk evaluation method of rock burst was proposed to pre-evaluate rock burst risk. Theoretical basis of this method is the stress criterion incurring rock burst and rock burst risk is evaluated according to the closeness degree of the total stress(due to the superposition of static stress in the coal and dynamic stress induced by tremors) with the critical stress. In addition, risk evaluation criterion of rock burst was established by defining the "Satisfaction Degree" of static stress. Furthermore,the method was used to pre-evaluate rock burst risk degree and prejudge endangered area of an insular longwall face in Nanshan Coal Mine in China. Results show that rock burst risk is moderate at advance extent of 97 m, strong at advance extent of 97-131 m,and extremely strong(i.e. inevitable to occur) when advance extent exceeds 131 m(mining is prohibited in this case). The section of two gateways whose floor abuts 15-3 coal seam is a susceptible area prone to rock burst. Evaluation results were further compared with rock bursts and tremors detected by microseismic monitoring. Comparison results indicate that evaluation results are consistent with microseismic monitoring, which proves the method's feasibility.
基金Supported by the-National Natural Science Foundation of China (30671448) the Science and Technology Pillar Program of Hebei Province 12220802D)
文摘Acid mine drainage (AMD) that releases highly acidic, sulfate and metals-rich drainage is a serious environmental problem in coal mining areas in China. In order to study the effect of using loess for preventing AMD and controlling heavy metals contamination from coal waste, the column leaching tests were conducted. The results come from experiment data analyses show that the loess can effectively immobilize cadmium, copper, iron, lead and zinc in AMD from coal waste, increase pH value, and decrease Eh, EC, and 8024- concentrations of AMD from coal waste. The oxidation of sulfide in coal waste is prevented by addition of the loess, which favors the generation and adsorption of the alkalinity, the decrease of the population of Thiobacillusferrooxidans, the heavy metals immobilization by precipitation of sulfide and carbonate through biological sul- fate reduction inside the column, and the halt of the oxidation process of sulfide through iron coating on the surface of sulfide in coal waste. The loess can effectively prevent AMD and heavy metals contamination from coal waste in in-situ treatment systems.
基金National Twelve Five-year Plan Science and Technology Program (2012BAC04B03).
文摘Mining activities produced a lot of abandoned mine land. This paper introduced the theoretical and technical progress of ecological restoration of surface coal mines, mining subsidence land and coal waste piles in China and discussed some key problems for research in the future. Ecological restoration of abandoned mine land was related to many disciplines, and multi-disciplinary theories might make great contributes to it. Some practical techniques of ecological restoration of abandoned mine land and their demonstration bases in China were introduced. Ecosystem succession process and mechanism, structure optimization of land use and new technologies of ecological restoration of abandoned mine land should be focused on in research activities.