s: The removal of bed material from active river channels usually affects the bed profile of the streambed, causing progressive degradation upstream and downstream of the extraction site. These effects can extend for ...s: The removal of bed material from active river channels usually affects the bed profile of the streambed, causing progressive degradation upstream and downstream of the extraction site. These effects can extend for kilometers affecting hydraulic structures located in the vicinity of the river reach. In this paper, the geomorphic effects of gravel mining are reviewed and summarized. Some cases in Venezuelan streams are presented to illustrate the problem. To describe the processes of erosion and sedimentation in a gravel extraction pit, a recent developed mathematical model for the simulation of flow and sediment transport in gravel-cobble bed streams is applied to a hypothetical case of gravel mining in a river channel. A simple rectangular dredge pit is imposed as initial condition in the channel bed, and changes in bed elevations and grain size distribution of bed material are calculated by using the numerical model. The process of deposition within the pit, and the downstream and upstream migration of the erosion wave are well simulated by the model and closely resemble the phenomena observed in laboratory experiments. The response of the friction coefficient to the changes in flow and bed elevations shows the importance in modeling adequately flow resistance and sediment transport in gravel-cobble bed streams.展开更多
In worldwide, the most common triggering factor of rock landslides is extended and intense rainfall. However, different from the soil slope failure caused by softening action of infiltration rainwater, the mechanism o...In worldwide, the most common triggering factor of rock landslides is extended and intense rainfall. However, different from the soil slope failure caused by softening action of infiltration rainwater, the mechanism of rock landslide in rainfall is not clear. From the view of fracture mechanics, the propagation of cracks on rock slope and the development of sliding surface were researched. Then based on hydraulics formulas and using Sweden arc method, the influence of crack water on stability of rock slope was quantitatively studied. Finally, an example was given to check the theoretical approach. The result shows that the development of sliding surface of rock slope is mainly caused by crack propagation under hydrostatic pressure when the stress intensity factor KI at crack tip is bigger than the toughness index of rock fractures Klc, and the failure of slope is the result of hydraulic action of crack water and the softening of materials on sliding surface when the depth of crack water is bigger than a minimum value hmin.展开更多
A simple and convenient analysis of the process of time-dependent solidification in an enclosed liquid cooled from the side in the presence of natural convection is presented, the influence of each parameter on the pr...A simple and convenient analysis of the process of time-dependent solidification in an enclosed liquid cooled from the side in the presence of natural convection is presented, the influence of each parameter on the process of solidification is carried out systematically. The accuracy of this model is justified by comparing its predicting values with the Previous results.展开更多
文摘s: The removal of bed material from active river channels usually affects the bed profile of the streambed, causing progressive degradation upstream and downstream of the extraction site. These effects can extend for kilometers affecting hydraulic structures located in the vicinity of the river reach. In this paper, the geomorphic effects of gravel mining are reviewed and summarized. Some cases in Venezuelan streams are presented to illustrate the problem. To describe the processes of erosion and sedimentation in a gravel extraction pit, a recent developed mathematical model for the simulation of flow and sediment transport in gravel-cobble bed streams is applied to a hypothetical case of gravel mining in a river channel. A simple rectangular dredge pit is imposed as initial condition in the channel bed, and changes in bed elevations and grain size distribution of bed material are calculated by using the numerical model. The process of deposition within the pit, and the downstream and upstream migration of the erosion wave are well simulated by the model and closely resemble the phenomena observed in laboratory experiments. The response of the friction coefficient to the changes in flow and bed elevations shows the importance in modeling adequately flow resistance and sediment transport in gravel-cobble bed streams.
基金Project(2008CB425802) supported by the National Basic Research Program of China Project(40872181) supported by the National Natural Science Foundation of ChinaProject(09R2200200) supported by the West Light Foundation of Chinese Academy of Sciences
文摘In worldwide, the most common triggering factor of rock landslides is extended and intense rainfall. However, different from the soil slope failure caused by softening action of infiltration rainwater, the mechanism of rock landslide in rainfall is not clear. From the view of fracture mechanics, the propagation of cracks on rock slope and the development of sliding surface were researched. Then based on hydraulics formulas and using Sweden arc method, the influence of crack water on stability of rock slope was quantitatively studied. Finally, an example was given to check the theoretical approach. The result shows that the development of sliding surface of rock slope is mainly caused by crack propagation under hydrostatic pressure when the stress intensity factor KI at crack tip is bigger than the toughness index of rock fractures Klc, and the failure of slope is the result of hydraulic action of crack water and the softening of materials on sliding surface when the depth of crack water is bigger than a minimum value hmin.
文摘A simple and convenient analysis of the process of time-dependent solidification in an enclosed liquid cooled from the side in the presence of natural convection is presented, the influence of each parameter on the process of solidification is carried out systematically. The accuracy of this model is justified by comparing its predicting values with the Previous results.