Rock fracture warning is one of the significant challenges in rock mechanics.Many true triaxial and synchronous acoustic emission(AE)tests were conducted on granite samples.The investigation focused on the characteris...Rock fracture warning is one of the significant challenges in rock mechanics.Many true triaxial and synchronous acoustic emission(AE)tests were conducted on granite samples.The investigation focused on the characteristics of AE signals preceding granite fracture,based on the critical slowing down(CSD)theory.The granite undergoes a transition from the stable phase to the fracture phase and exhibits a clear CSD phenomenon,characterized by a pronounced increase in variance and autocorrelation coefficient.The variance mutation points were found to be more identifiable and suitable as the primary criterion for predicting precursor information related to granite fracture,compared to the autocorrelation coefficient.It is noteworthy to emphasize that the CSD factor holds greater potential in elucidating the underlying mechanisms responsible for the critical transition of granite fracture,in comparison to the AE timing parameters.Furthermore,a novel multi-parameter collaborative prediction method for rock fracture was developed by comprehensively analyzing predictive information,including abnormal variation modes and the CSD factor of AE characteristic parameters.This method enhances the understanding and prediction of rock fracture-related geohazards.展开更多
50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, ...50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, and no apparent porosities or significant casting defects were observed in the composites. The diamond-Al interfaces of as-cast and annealed diamond/2024 Al composites were clean, smooth and free from interfacial reaction product. However, a large number of Al2Cu precipitates were found at diamond-Al interface after aging treatment. Moreover, needle-shaped Al2MgCu precipitates in Al matrix were observed after aging treatment. The coefficient of thermal expansion (CTE) of diamond/2024 Al composites was about 8.5×10-6 °C-1 between 20 and 100 °C, which was compatible with that with chip materials. Annealing treatment showed little effect on thermal expansion behavior, and aging treatment could further decrease the CTE of the composites. The thermal conductivity of obtained diamond/2024 Al composites was about 100 W/(m?K), and it was slightly increased after annealing while decreased after aging treatment.展开更多
The samples of brazed diamond grits with NiCr brazing alloy are prepared in vacuum and argon gas. The microstructures are analyzed with scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS...The samples of brazed diamond grits with NiCr brazing alloy are prepared in vacuum and argon gas. The microstructures are analyzed with scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction(XRD). The effects of brazing atmospheres on the as-brazed NiCr brazing alloy composite structures and interracial microstructure are studied between diamond grits and brazing alloy. Results show that: (1) There are different composite structures of as-brazed NiCr brazing alloy under different oxygen partial pressures in vacuum and argon gas. B203 exists on the surface of the brazed samples under argon gas furnace brazing. It indicates that oxygen plays an important role in the resultants of as-brazed NiCr brazing alloy during the brazing process. (2) There are different interfacial microstructures in different brazing atmospheres, but the main reaction product is chromium carbides. The chromium carbides in argon gas furnace brazing grow in a disordered form, but those in vacuum furnace brazing grow radiated. And the scale of grains in argon gas is smaller than those in vacuum.展开更多
A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical po...A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which significantly improves the prediction accuracy.展开更多
In order to reveal the physical essence of the spreading process of reactive wetting,a sort of model of energy to explain the driving force and wetting mechanism was presented.The reactive wetting of molten A1 and Cu ...In order to reveal the physical essence of the spreading process of reactive wetting,a sort of model of energy to explain the driving force and wetting mechanism was presented.The reactive wetting of molten A1 and Cu Si on graphite was studied by a modified sessile drop method under a vacuum,in which the contact angles were measured by ADSA software.The thermodynamic and kinetic processes of the typical reactive wetting were focused on,the thermodynamic equations of energy relations were derived,the interfacial energy of graphite and solid-liquid interfacial energy versus time at the triple line were calculated,and the dynamics model of interface energy is established.The presented dynamics model is verified by means of experimental results,and it is shown that solid liquid interfacial energy decreases with time in exponential relationship.It provides a new method for reference to explain the process from the angle of energy.展开更多
Modified cable bolts are commonly used in underground mines due to their superior performance in preventing bed separation when compared with plain strands. To better test the axial performance of a wide range of cabl...Modified cable bolts are commonly used in underground mines due to their superior performance in preventing bed separation when compared with plain strands. To better test the axial performance of a wide range of cable bolts,a new laboratory short encapsulation pull test(LSEPT) facility was developed. The facility simulates the interaction between cable bolts and surrounding rock mass,using artificial rock cylinders with a diameter of 300 mm in which the cable bolt is grouted. Furthermore,the joint where the load is applied is left unconstrained to allow shear slippage at the cable/grout or grout/rock interface.Based on this apparatus,a series of pull tests were undertaken using the MW9 modified bulb cable bolt.Various parameters including embedment length,test material strength and borehole size were evaluated. It was found that within a limited range of 360 mm,there is a linear relationship between the maximum bearing capacity of the cable bolt and embedment length. Beyond 360 mm,the peak capacity continues to rise but with a much lower slope. When the MW9 cable bolt was grouted in a weak test material,failure always took place along the grout/rock interface. Interestingly,increasing the borehole diameter from 42 to 52 m in weak test material altered the failure mode from grout/rock interface to cable/grout interface and improved the performance in terms of both peak and residual capacity.展开更多
We presented a density functional theory study on doping effects of transition metals(Cr and Ti)on the Cu/graphene interface adhesion.Various undoped Cu/graphene interface structures were constructed using both the sa...We presented a density functional theory study on doping effects of transition metals(Cr and Ti)on the Cu/graphene interface adhesion.Various undoped Cu/graphene interface structures were constructed using both the sandwich and the surface models.Energetics calculations showed that the interface binding strength only weakly depends on interface coordination.Both interface models predicted the top-fcc coordination type as the most energy-favored,with a low binding energy value.Segregated Cr prefers to substituting for Cu, while Ti occupies a hollow site at the interface.Although the segregation tendencies are both very weak,once present on the interface,both dopants can greatly increase the interface binding energy and improve the adhesion.展开更多
The world,the continent and the large country at all times have similar distribution of intervals between recurrences of the great earthquakes,depending on the earthquake sequence. lt indicates that how the force sour...The world,the continent and the large country at all times have similar distribution of intervals between recurrences of the great earthquakes,depending on the earthquake sequence. lt indicates that how the force source of world scale changes with time and space.展开更多
Ultrasonic coda waves are widely usea to stuay hign-trequency scattering, however, ultrasonic coda waves are strongly affected by interference from by boundary-reflected waves. To understand the effect of boundary-ref...Ultrasonic coda waves are widely usea to stuay hign-trequency scattering, however, ultrasonic coda waves are strongly affected by interference from by boundary-reflected waves. To understand the effect of boundary-reflected waves, we performed ultrasonic experiments using aluminum and shale samples, and the rotating staggered-mesh finite-difference method to simulate the wavefield. We analyzed the wavefield characteristics at the different receiving points and the interference characteristics of the boundary-reflected waves with the ultrasonic coda wave, and the effect of sample geometry on the ultrasonic coda waves. The increase in the aspect ratio of the samples delays the interference effect of the laterally reflected waves and reduces the effect on the ultrasonic coda waves. The main waves interfering with the ultrasonic coda waves are laterally reflected PP-, PS-, PPP-, and PPS-waves. The scattering and attenuation of the high-frequency energy in actual rocks can weaken the interference of laterally reflected waves with the ultrasonic coda waves.展开更多
To investigate the dynamic behavior and energy dissipation of the rock−concrete interface,dynamic splitting tests on bi-material discs were conducted by using the split Hopkinson pressure bar.The test results reveal t...To investigate the dynamic behavior and energy dissipation of the rock−concrete interface,dynamic splitting tests on bi-material discs were conducted by using the split Hopkinson pressure bar.The test results reveal that with the change of the interface inclination angles(θ),the influence of interface groove width on the bearing capacity of specimens also varies.Whenθincreases from 0°to 30°,the bearing capacity of the specimen increases first and then decreases with the rise of the interface groove width;the optimal groove width on the rock surface in this range of interface inclination angles is 5 mm.Whenθincreases from 45°to 90°,the bearing capacity of the specimen has no obvious change.Moreover,whenθincreases from 0°to 45°,the dissipated energy of the specimens rises obviously at first and then tends to be stable as the width of the interface groove increases.展开更多
Graphene-reinforced Mg matrix composites suffer seriously from the weak Mg/graphene interfacial bonding.In this study,a first-principles study was performed to evaluate the feasibility of improving the Mg/graphene bon...Graphene-reinforced Mg matrix composites suffer seriously from the weak Mg/graphene interfacial bonding.In this study,a first-principles study was performed to evaluate the feasibility of improving the Mg/graphene bonding using an in-situ formed intermediate MgO layer.The calculated interface adhesion strengths suggested a relative ordering(from high to low)of Mg(0001)/MgO(11−1)>MgO(11−1)/graphene>Mg(0001)/graphene.The enhanced Mg/MgO/graphene interface bonding can be attributed to the newly formed strong ionic and covalent interactions at the Mg/MgO and the MgO/graphene interfaces,respectively,which replace the otherwise very weak van der Waals bonding between Mg and graphene.展开更多
Oxygen-free copper and pre-metalized graphite were brazed using CuNiSnP braze alloy by high frequency induction heating method. Interracial microstructures and reaction phases were analyzed by scanning electron micros...Oxygen-free copper and pre-metalized graphite were brazed using CuNiSnP braze alloy by high frequency induction heating method. Interracial microstructures and reaction phases were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The strength and resistance of the joints were tested. It is found that when the brazing parameters are optimized, the structures of the joints are graphite/(Cu,Ni)/Ni(s.s)+NixPy/Cu3P+Cu(s.s) (including Sn)+eutectic structures (Cu3P+Ni3P+Cu(s.s)/Cu (s.s)/Cu). When the temperature increases to 750℃ or the holding time prolongs to 300 s, the eutectie structures disappear and the amount of Cu3P increases. The maximum shear strength of the joints is 5.2 MPa, which fracture at the interface of graphite and metallization. The resistance of the joints is no more than 5 mΩ.展开更多
In this essay, I make the claim that the study of religion suffers from an identity crisis that is made all the worse by an inability to effectively navigate not only the many divisions within the field, but also the ...In this essay, I make the claim that the study of religion suffers from an identity crisis that is made all the worse by an inability to effectively navigate not only the many divisions within the field, but also the many ways in which influences external to the realm of scholarship, including media, university administration, and public opinion, represent significant areas of discourse that need to be better integrated into our scholarly work. In conclusion, I argue that a greater attention to the ethical or social value of social theory can go a long way in helping to clarify what is at stake, and perhaps even bridge some of these divides without loosing academic integrity.展开更多
Subcritical crack growth of double torsion specimens made of marble was studied using Instron1342 type electro hydraulic servo test machine. The relations of the mode-I stress intensity factor KI versus the subcritica...Subcritical crack growth of double torsion specimens made of marble was studied using Instron1342 type electro hydraulic servo test machine. The relations of the mode-I stress intensity factor KI versus the subcritical crack growth velocity V and the fracture toughness KIC were obtained by the double torsion constant displacement load relaxation method. The behavior of subcritical crack growth was analyzed. The results show that lgKI-lgV relations of marble measured by this method accord with linear rule, i.e. the relations between subcritical crack growth velocity V and stress intensity factor KI have a power law, which is in good agreement with Charles theory. The testing results provide a basis for time-dependency of rock engineering stability.展开更多
Critical rainfall assessment is a very important tool for hazard management of torrents and debris flows in mountainous areas. The Wenchuan Earthquake 2008 caused huge casualties and property damages in the earthquake...Critical rainfall assessment is a very important tool for hazard management of torrents and debris flows in mountainous areas. The Wenchuan Earthquake 2008 caused huge casualties and property damages in the earthquake-stricken area,which also generated large quantities of loose solid materials and increased occurrence probabilities of debris flows. There is an urgent need to quantify the critical rainfall distribution in the area so that better hazard management could be planned and if real time rainfall forecast is available,torrent and debris flow early-warning could be issued in advance. This study is based on 49-year observations (1954-2003) of up to 678 torrent and debris flow events. Detailed contour maps of 1 hour and 24 hour critical rainfalls have been generated (Due to the data limitation,there was insufficient 10 minute critical rainfall to make its contour map). Generally,the contour maps from 1 hour and 24 hours have similar patterns. Three zones with low,medium and high critical rainfalls have been identified. The characteristics of the critical rainfall zones are linked with the local vegetation cover and land forms. Further studies and observations are needed to validate the finding and improve the contour maps.展开更多
We present zircon ages and geochemical data for the Hongshishan Carboniferous Alaskan-type mafic–ultramafic complex exposed in the Beishan area along the Sino–Mongolian boundary, southern margin of the Central Asian...We present zircon ages and geochemical data for the Hongshishan Carboniferous Alaskan-type mafic–ultramafic complex exposed in the Beishan area along the Sino–Mongolian boundary, southern margin of the Central Asian Orogenic Belt. This complex mainly consists of dunite,harzburgite, lherzolite, wehrlite, and gabbro, which intrudes Early Carboniferous volcanic rocks and reveals a zoned structure. Zircons of a gabbro sample yielded a 206Pb/238 U age of 357 ± 4 Ma, reflecting the time of Early Carboniferous magmatism. Zircon ages were also obtained for an andesite(322 ± 3 Ma) and a basaltic andesite(304 ± 2 Ma).High initial Nd isotope whole-rock values suggest that the Hongshishan gabbro [e_(Nd(t))= +9.6-+10.2] and basalt[eNd(t)= +10.0-+10.8] were derived from a depleted mantle source. Slightly lower eNd(t)values for the ultramafic rocks [eNd(t)= +8.5-+8.7] suggest some interaction of the parental magma with the continental crust. In contrast, the Late Carboniferous Quershan samples in this area represent subduction-related arc volcanic rocks with Adakite-like compositions. The early Carboniferous Hongshishan Alaskan-type complex was interpreted to represent the remnants of a magma chamber that crystallized at the base of a mature island arc, whereas the Quershan island arc volcanic rockssuggest the resurrection of the subduction process after arccontinent collision and uplift of the roots of the arc.展开更多
The influence of petroleum sulphonate (TRS) on interfacial properties and stability of the emulsions formed by formation water and asphaltene, resin and crude model oils from Gudong crude oil was investigated by measu...The influence of petroleum sulphonate (TRS) on interfacial properties and stability of the emulsions formed by formation water and asphaltene, resin and crude model oils from Gudong crude oil was investigated by measurement of interfacial shear viscosity, interfacial tension (IFT) and emulsion stability. With increasing petroleum sulphonate concentration, IFT between the formation water and the asphaltene, resin and crude model oils decreases significantly. The interfacial shear viscosity and emulsion stability of asphaltene and crude model oil system increase for the petroleum sulphonate concentration in the range 0.1% to 0.3%, and decrease slightly when the concentration of the surfactant is 0.5%. There exists a close correlation between the interfacial shear viscosity and the stability of the emulsions formed by asphaltene or crude model oils and petroleum sulphonate solution.The stability of the emulsions is determined by the strength of the interfacial film formed of petroleum sulphonate molecules and the natural interfacial active components in the asphaltene fraction and the crude oil. The asphaltene in the crude oil plays a major role in determining the interfacial properties and the stability of the emulsions.展开更多
The expansive clays are extremely sensitive to the slight moisture alteration,exhibiting sequentially volume change.Uneven settlement of the buildings and infrastructures underlying expansive soil is a critical challe...The expansive clays are extremely sensitive to the slight moisture alteration,exhibiting sequentially volume change.Uneven settlement of the buildings and infrastructures underlying expansive soil is a critical challenge that geotechnical engineers have to deal with.Therefore,the objective of this study is to assess the alteration in the compressibility behavior of expansive clay respecting partial replacement of cement by zeolite in cemented samples.For this purpose,7 and 28 d cured samples treated with 6%,8%,10%,and 12%cement addition and 0,10%,30%,50%,70%,and 90%cement replacement by zeolite were investigated through Atterberg limit and a series of one-dimensional consolidation tests to evaluate the consistency limits and compressibility alteration.The liquid limits of the soil samples indicated a decremental trend as the cement content rose.Afterward,the increase of zeolite replacement up to 30%in each specific cement content diminished liquid limit to its lowest value.Further increment of zeolite replacement increased the liquid limit of the soil-binder mixtures.The lowest plasticity index was also achieved at the 30%zeolite replacement percentage;hence,the lowest swelling potential would be resulted,concerning an indirect classification.The results of the consolidation experimentations disclosed that zeolite replacement had adverse influence on consolidation parameters of cemented samples such as compression index,swell index,coefficient of compressibility,coefficient of volume compressibility,and coefficient of consolidation after 7 d of curing whereas after 28 d of curing,the 30%zeolite-replaced samples represented the best consolidation parameters.Eventually,it can be stated that the addition of cement alongside the partial substitution of cement by zeolite can be a beneficial strategy for the geo-environmental targets of this study.展开更多
Most of the carbonates in the Tarim Basin in northwest China are low-porosity and low-permeability rocks. Owing to the complexity of porosity in carbonates, conventional rock- physics models do not describe the relati...Most of the carbonates in the Tarim Basin in northwest China are low-porosity and low-permeability rocks. Owing to the complexity of porosity in carbonates, conventional rock- physics models do not describe the relation between velocity and porosity for the Tarim Basin carbonates well. We propose the porous-grain-upper-boundary (PGU) model for estimating the relation between velocity and porosity for low-porosity carbonates. In this model, the carbonate sediments are treated as packed media of porous elastic grains, and the carbonate pores are divided into isolated and connected pores The PGU model is modified from the porous-grain-stiff-sand (PGST) model by replacing the critical porosity with the more practical isolated porosity. In the implementation, the effective elastic constants of the porous grains are calculated by using the differential effective medium (DEM) model. Then, the elastic constants of connected porous grains in dry rocks are calculated by using the modified upper Hashin-Shtrikman bound. The application to the Tarim carbonates shows that relative to other conventional effective medium models the PGU model matches the well log data well.展开更多
Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different s...Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different samples was observed,and the thermal conductivity of samples was measured by laser flash method.The optimal process parameters for preparing diamond/copper composites with high thermal conductivity were investigated.The results indicated that plating tungsten on diamond could modify the interface bonding.When the diamond was plated for 60 min,the coating appeared intact,uniform and flat,and the thermal conductivity of the sample could reach as high as 486 W/(m·K).The integrity and uniformity were more important than thickness for the coating.When the tungsten-plated diamond was further annealed,the metallurgical bonding between the coating and the diamond was enhanced,and the thermal conductivity rose to 559 W/(m·K).展开更多
基金Project(52074294)supported by the National Natural Science Foundation of ChinaProject(2022YJSNY16)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Rock fracture warning is one of the significant challenges in rock mechanics.Many true triaxial and synchronous acoustic emission(AE)tests were conducted on granite samples.The investigation focused on the characteristics of AE signals preceding granite fracture,based on the critical slowing down(CSD)theory.The granite undergoes a transition from the stable phase to the fracture phase and exhibits a clear CSD phenomenon,characterized by a pronounced increase in variance and autocorrelation coefficient.The variance mutation points were found to be more identifiable and suitable as the primary criterion for predicting precursor information related to granite fracture,compared to the autocorrelation coefficient.It is noteworthy to emphasize that the CSD factor holds greater potential in elucidating the underlying mechanisms responsible for the critical transition of granite fracture,in comparison to the AE timing parameters.Furthermore,a novel multi-parameter collaborative prediction method for rock fracture was developed by comprehensively analyzing predictive information,including abnormal variation modes and the CSD factor of AE characteristic parameters.This method enhances the understanding and prediction of rock fracture-related geohazards.
基金Project (AWJ-M13-15) supported by the Open Fund of State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China
文摘50%diamond particle (5μm) reinforced 2024 aluminum matrix (diamond/2024 Al) composites were prepared by pressure infiltration method. Diamond particles were distributed uniformly without any particle clustering, and no apparent porosities or significant casting defects were observed in the composites. The diamond-Al interfaces of as-cast and annealed diamond/2024 Al composites were clean, smooth and free from interfacial reaction product. However, a large number of Al2Cu precipitates were found at diamond-Al interface after aging treatment. Moreover, needle-shaped Al2MgCu precipitates in Al matrix were observed after aging treatment. The coefficient of thermal expansion (CTE) of diamond/2024 Al composites was about 8.5×10-6 °C-1 between 20 and 100 °C, which was compatible with that with chip materials. Annealing treatment showed little effect on thermal expansion behavior, and aging treatment could further decrease the CTE of the composites. The thermal conductivity of obtained diamond/2024 Al composites was about 100 W/(m?K), and it was slightly increased after annealing while decreased after aging treatment.
基金Supported by the National Natural Science Foundation of China(50475040)the Aeronautical Science Foundation of China(2005ZH52060)the Natural Science Foundation of Jiangsu Province(BK2006723)~~
文摘The samples of brazed diamond grits with NiCr brazing alloy are prepared in vacuum and argon gas. The microstructures are analyzed with scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction(XRD). The effects of brazing atmospheres on the as-brazed NiCr brazing alloy composite structures and interracial microstructure are studied between diamond grits and brazing alloy. Results show that: (1) There are different composite structures of as-brazed NiCr brazing alloy under different oxygen partial pressures in vacuum and argon gas. B203 exists on the surface of the brazed samples under argon gas furnace brazing. It indicates that oxygen plays an important role in the resultants of as-brazed NiCr brazing alloy during the brazing process. (2) There are different interfacial microstructures in different brazing atmospheres, but the main reaction product is chromium carbides. The chromium carbides in argon gas furnace brazing grow in a disordered form, but those in vacuum furnace brazing grow radiated. And the scale of grains in argon gas is smaller than those in vacuum.
基金sponsored by Important National Science and Technology Specifi c Projects of China (No.2011ZX05001)
文摘A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which significantly improves the prediction accuracy.
基金Project(50471007)supported by the National Natural Science Foundation of China
文摘In order to reveal the physical essence of the spreading process of reactive wetting,a sort of model of energy to explain the driving force and wetting mechanism was presented.The reactive wetting of molten A1 and Cu Si on graphite was studied by a modified sessile drop method under a vacuum,in which the contact angles were measured by ADSA software.The thermodynamic and kinetic processes of the typical reactive wetting were focused on,the thermodynamic equations of energy relations were derived,the interfacial energy of graphite and solid-liquid interfacial energy versus time at the triple line were calculated,and the dynamics model of interface energy is established.The presented dynamics model is verified by means of experimental results,and it is shown that solid liquid interfacial energy decreases with time in exponential relationship.It provides a new method for reference to explain the process from the angle of energy.
文摘Modified cable bolts are commonly used in underground mines due to their superior performance in preventing bed separation when compared with plain strands. To better test the axial performance of a wide range of cable bolts,a new laboratory short encapsulation pull test(LSEPT) facility was developed. The facility simulates the interaction between cable bolts and surrounding rock mass,using artificial rock cylinders with a diameter of 300 mm in which the cable bolt is grouted. Furthermore,the joint where the load is applied is left unconstrained to allow shear slippage at the cable/grout or grout/rock interface.Based on this apparatus,a series of pull tests were undertaken using the MW9 modified bulb cable bolt.Various parameters including embedment length,test material strength and borehole size were evaluated. It was found that within a limited range of 360 mm,there is a linear relationship between the maximum bearing capacity of the cable bolt and embedment length. Beyond 360 mm,the peak capacity continues to rise but with a much lower slope. When the MW9 cable bolt was grouted in a weak test material,failure always took place along the grout/rock interface. Interestingly,increasing the borehole diameter from 42 to 52 m in weak test material altered the failure mode from grout/rock interface to cable/grout interface and improved the performance in terms of both peak and residual capacity.
基金Project(2018YFE0306100) supported by the National MCF Energy R&D Program of China
文摘We presented a density functional theory study on doping effects of transition metals(Cr and Ti)on the Cu/graphene interface adhesion.Various undoped Cu/graphene interface structures were constructed using both the sandwich and the surface models.Energetics calculations showed that the interface binding strength only weakly depends on interface coordination.Both interface models predicted the top-fcc coordination type as the most energy-favored,with a low binding energy value.Segregated Cr prefers to substituting for Cu, while Ti occupies a hollow site at the interface.Although the segregation tendencies are both very weak,once present on the interface,both dopants can greatly increase the interface binding energy and improve the adhesion.
文摘The world,the continent and the large country at all times have similar distribution of intervals between recurrences of the great earthquakes,depending on the earthquake sequence. lt indicates that how the force source of world scale changes with time and space.
基金supported by the Strategic Leading Science and Technology Programme(Class B)of the Chinese Academy of Sciences(No.XDB10010400)
文摘Ultrasonic coda waves are widely usea to stuay hign-trequency scattering, however, ultrasonic coda waves are strongly affected by interference from by boundary-reflected waves. To understand the effect of boundary-reflected waves, we performed ultrasonic experiments using aluminum and shale samples, and the rotating staggered-mesh finite-difference method to simulate the wavefield. We analyzed the wavefield characteristics at the different receiving points and the interference characteristics of the boundary-reflected waves with the ultrasonic coda wave, and the effect of sample geometry on the ultrasonic coda waves. The increase in the aspect ratio of the samples delays the interference effect of the laterally reflected waves and reduces the effect on the ultrasonic coda waves. The main waves interfering with the ultrasonic coda waves are laterally reflected PP-, PS-, PPP-, and PPS-waves. The scattering and attenuation of the high-frequency energy in actual rocks can weaken the interference of laterally reflected waves with the ultrasonic coda waves.
基金supported by the National Natural Science Foundation of China (No.41772313)the National Natural Science Foundation for Young Scientists of China (No.52104111)+3 种基金the Hunan Science and Technology Planning Project,China (No.2019RS3001)the Natural Science Foundation of Hunan Province,China (No.2021JJ30819)Key Science and Technology Project of Guangxi Transportation Industry (Research on fine blasting and disaster control technology of mountain expressway tunnel),Chinathe financial contribution and convey their appreciation for supporting this basic research。
文摘To investigate the dynamic behavior and energy dissipation of the rock−concrete interface,dynamic splitting tests on bi-material discs were conducted by using the split Hopkinson pressure bar.The test results reveal that with the change of the interface inclination angles(θ),the influence of interface groove width on the bearing capacity of specimens also varies.Whenθincreases from 0°to 30°,the bearing capacity of the specimen increases first and then decreases with the rise of the interface groove width;the optimal groove width on the rock surface in this range of interface inclination angles is 5 mm.Whenθincreases from 45°to 90°,the bearing capacity of the specimen has no obvious change.Moreover,whenθincreases from 0°to 45°,the dissipated energy of the specimens rises obviously at first and then tends to be stable as the width of the interface groove increases.
基金the financial supports from the National Natural Science Foundation of China(Nos.52061028,52061039,51971249,51761037)the Natural Science Foundation of Jiangxi Province,China(No.2020BABL204002)+1 种基金the Interdisciplinary Innovation Fund of Nanchang University(IIFNCU),China(No.9166-27060003-ZD05)the Innovative Funding for Graduate Students in Nanchang University,China(No.CX2019068).
文摘Graphene-reinforced Mg matrix composites suffer seriously from the weak Mg/graphene interfacial bonding.In this study,a first-principles study was performed to evaluate the feasibility of improving the Mg/graphene bonding using an in-situ formed intermediate MgO layer.The calculated interface adhesion strengths suggested a relative ordering(from high to low)of Mg(0001)/MgO(11−1)>MgO(11−1)/graphene>Mg(0001)/graphene.The enhanced Mg/MgO/graphene interface bonding can be attributed to the newly formed strong ionic and covalent interactions at the Mg/MgO and the MgO/graphene interfaces,respectively,which replace the otherwise very weak van der Waals bonding between Mg and graphene.
基金Project(50705022) supported by the National Natural Science Foundation of ChinaProject supported by the Program for New Century Excellent Talents in University
文摘Oxygen-free copper and pre-metalized graphite were brazed using CuNiSnP braze alloy by high frequency induction heating method. Interracial microstructures and reaction phases were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The strength and resistance of the joints were tested. It is found that when the brazing parameters are optimized, the structures of the joints are graphite/(Cu,Ni)/Ni(s.s)+NixPy/Cu3P+Cu(s.s) (including Sn)+eutectic structures (Cu3P+Ni3P+Cu(s.s)/Cu (s.s)/Cu). When the temperature increases to 750℃ or the holding time prolongs to 300 s, the eutectie structures disappear and the amount of Cu3P increases. The maximum shear strength of the joints is 5.2 MPa, which fracture at the interface of graphite and metallization. The resistance of the joints is no more than 5 mΩ.
文摘In this essay, I make the claim that the study of religion suffers from an identity crisis that is made all the worse by an inability to effectively navigate not only the many divisions within the field, but also the many ways in which influences external to the realm of scholarship, including media, university administration, and public opinion, represent significant areas of discourse that need to be better integrated into our scholarly work. In conclusion, I argue that a greater attention to the ethical or social value of social theory can go a long way in helping to clarify what is at stake, and perhaps even bridge some of these divides without loosing academic integrity.
基金Supported by the National Nature Science Foundation of China(50274074, 50490274) Innovation Research Project for PhD Candidate of CSU(030608)
文摘Subcritical crack growth of double torsion specimens made of marble was studied using Instron1342 type electro hydraulic servo test machine. The relations of the mode-I stress intensity factor KI versus the subcritical crack growth velocity V and the fracture toughness KIC were obtained by the double torsion constant displacement load relaxation method. The behavior of subcritical crack growth was analyzed. The results show that lgKI-lgV relations of marble measured by this method accord with linear rule, i.e. the relations between subcritical crack growth velocity V and stress intensity factor KI have a power law, which is in good agreement with Charles theory. The testing results provide a basis for time-dependency of rock engineering stability.
基金financially supported by the Scholarship of Knowledge Innovation Project, Chinese Academy of Sciences (KZCX2-YW-332)
文摘Critical rainfall assessment is a very important tool for hazard management of torrents and debris flows in mountainous areas. The Wenchuan Earthquake 2008 caused huge casualties and property damages in the earthquake-stricken area,which also generated large quantities of loose solid materials and increased occurrence probabilities of debris flows. There is an urgent need to quantify the critical rainfall distribution in the area so that better hazard management could be planned and if real time rainfall forecast is available,torrent and debris flow early-warning could be issued in advance. This study is based on 49-year observations (1954-2003) of up to 678 torrent and debris flow events. Detailed contour maps of 1 hour and 24 hour critical rainfalls have been generated (Due to the data limitation,there was insufficient 10 minute critical rainfall to make its contour map). Generally,the contour maps from 1 hour and 24 hours have similar patterns. Three zones with low,medium and high critical rainfalls have been identified. The characteristics of the critical rainfall zones are linked with the local vegetation cover and land forms. Further studies and observations are needed to validate the finding and improve the contour maps.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.40703012,41030314)Geological Survey of China (Grant Nos.1212011120332,DD20160123-05)Chinese Ministry of Science and Technology (Grant 2012FY120100)
文摘We present zircon ages and geochemical data for the Hongshishan Carboniferous Alaskan-type mafic–ultramafic complex exposed in the Beishan area along the Sino–Mongolian boundary, southern margin of the Central Asian Orogenic Belt. This complex mainly consists of dunite,harzburgite, lherzolite, wehrlite, and gabbro, which intrudes Early Carboniferous volcanic rocks and reveals a zoned structure. Zircons of a gabbro sample yielded a 206Pb/238 U age of 357 ± 4 Ma, reflecting the time of Early Carboniferous magmatism. Zircon ages were also obtained for an andesite(322 ± 3 Ma) and a basaltic andesite(304 ± 2 Ma).High initial Nd isotope whole-rock values suggest that the Hongshishan gabbro [e_(Nd(t))= +9.6-+10.2] and basalt[eNd(t)= +10.0-+10.8] were derived from a depleted mantle source. Slightly lower eNd(t)values for the ultramafic rocks [eNd(t)= +8.5-+8.7] suggest some interaction of the parental magma with the continental crust. In contrast, the Late Carboniferous Quershan samples in this area represent subduction-related arc volcanic rocks with Adakite-like compositions. The early Carboniferous Hongshishan Alaskan-type complex was interpreted to represent the remnants of a magma chamber that crystallized at the base of a mature island arc, whereas the Quershan island arc volcanic rockssuggest the resurrection of the subduction process after arccontinent collision and uplift of the roots of the arc.
基金国家重点基础研究发展计划(973计划),an International Cooperation Research Program
文摘The influence of petroleum sulphonate (TRS) on interfacial properties and stability of the emulsions formed by formation water and asphaltene, resin and crude model oils from Gudong crude oil was investigated by measurement of interfacial shear viscosity, interfacial tension (IFT) and emulsion stability. With increasing petroleum sulphonate concentration, IFT between the formation water and the asphaltene, resin and crude model oils decreases significantly. The interfacial shear viscosity and emulsion stability of asphaltene and crude model oil system increase for the petroleum sulphonate concentration in the range 0.1% to 0.3%, and decrease slightly when the concentration of the surfactant is 0.5%. There exists a close correlation between the interfacial shear viscosity and the stability of the emulsions formed by asphaltene or crude model oils and petroleum sulphonate solution.The stability of the emulsions is determined by the strength of the interfacial film formed of petroleum sulphonate molecules and the natural interfacial active components in the asphaltene fraction and the crude oil. The asphaltene in the crude oil plays a major role in determining the interfacial properties and the stability of the emulsions.
文摘The expansive clays are extremely sensitive to the slight moisture alteration,exhibiting sequentially volume change.Uneven settlement of the buildings and infrastructures underlying expansive soil is a critical challenge that geotechnical engineers have to deal with.Therefore,the objective of this study is to assess the alteration in the compressibility behavior of expansive clay respecting partial replacement of cement by zeolite in cemented samples.For this purpose,7 and 28 d cured samples treated with 6%,8%,10%,and 12%cement addition and 0,10%,30%,50%,70%,and 90%cement replacement by zeolite were investigated through Atterberg limit and a series of one-dimensional consolidation tests to evaluate the consistency limits and compressibility alteration.The liquid limits of the soil samples indicated a decremental trend as the cement content rose.Afterward,the increase of zeolite replacement up to 30%in each specific cement content diminished liquid limit to its lowest value.Further increment of zeolite replacement increased the liquid limit of the soil-binder mixtures.The lowest plasticity index was also achieved at the 30%zeolite replacement percentage;hence,the lowest swelling potential would be resulted,concerning an indirect classification.The results of the consolidation experimentations disclosed that zeolite replacement had adverse influence on consolidation parameters of cemented samples such as compression index,swell index,coefficient of compressibility,coefficient of volume compressibility,and coefficient of consolidation after 7 d of curing whereas after 28 d of curing,the 30%zeolite-replaced samples represented the best consolidation parameters.Eventually,it can be stated that the addition of cement alongside the partial substitution of cement by zeolite can be a beneficial strategy for the geo-environmental targets of this study.
基金supported by the National Basic Research Program of China(2013CB228602)the National High Technology Research Program of China(2013AA064202)the National Science and Technology Major Project of China(Grant No.2011ZX05004-003)
文摘Most of the carbonates in the Tarim Basin in northwest China are low-porosity and low-permeability rocks. Owing to the complexity of porosity in carbonates, conventional rock- physics models do not describe the relation between velocity and porosity for the Tarim Basin carbonates well. We propose the porous-grain-upper-boundary (PGU) model for estimating the relation between velocity and porosity for low-porosity carbonates. In this model, the carbonate sediments are treated as packed media of porous elastic grains, and the carbonate pores are divided into isolated and connected pores The PGU model is modified from the porous-grain-stiff-sand (PGST) model by replacing the critical porosity with the more practical isolated porosity. In the implementation, the effective elastic constants of the porous grains are calculated by using the differential effective medium (DEM) model. Then, the elastic constants of connected porous grains in dry rocks are calculated by using the modified upper Hashin-Shtrikman bound. The application to the Tarim carbonates shows that relative to other conventional effective medium models the PGU model matches the well log data well.
基金supported by the National Natural Science Foundation of China(No.11802125)。
文摘Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different samples was observed,and the thermal conductivity of samples was measured by laser flash method.The optimal process parameters for preparing diamond/copper composites with high thermal conductivity were investigated.The results indicated that plating tungsten on diamond could modify the interface bonding.When the diamond was plated for 60 min,the coating appeared intact,uniform and flat,and the thermal conductivity of the sample could reach as high as 486 W/(m·K).The integrity and uniformity were more important than thickness for the coating.When the tungsten-plated diamond was further annealed,the metallurgical bonding between the coating and the diamond was enhanced,and the thermal conductivity rose to 559 W/(m·K).