The laboratory tests on the post-liquefaction deformation of saturated sand-gravel composites were performed to investigate the characteristics of stress-strain relation and the dissipation of pore water pressure by t...The laboratory tests on the post-liquefaction deformation of saturated sand-gravel composites were performed to investigate the characteristics of stress-strain relation and the dissipation of pore water pressure by the hollow cylinder apparatus. It is found that the stress-strain response and the dissipation process of pore water pressure are composed of three stages, including the low intensive strength stage, the superlinear strength recovery stage and the sublinear strength recovery stage, and the demarcation points of the curve of pore water pressure are lag behind those of the stress-strain response. The comparison results of the behaviour of large post-liquefaction deformation between saturated sand-gravel composites and Nanjing fine sand show that the low intensive strength stage and the superlinear strength recovery stage of saturated sand-gravel composites are shorter while the sublinear strength recovery stage is longer. A stress-strain model and a dissipation model of excess pore water pressure of liquefied sand-gravel composites are established, in which the initial confining pressure and the relative density can be considered synthetically. And it is found that the predicted results by the two models are in good agreement with experimental data.展开更多
The magnitude of river morphological changes are better analyzed through the use of quantitative approaches, wherein resolution accuracy and uncertainty assessment are treated as crucial key-factors. In this sense, th...The magnitude of river morphological changes are better analyzed through the use of quantitative approaches, wherein resolution accuracy and uncertainty assessment are treated as crucial key-factors. In this sense, the creation of precise DEMs (Digital Elevation Models) of rivers represents an affordable tool to analyze geomorphic variations and budgets, except for wetted areas, where reliable channel digitalization can normally be obtained only using expensive bathymetric surveys. The proposed work aims at improving channel surface models without having available bathymetric sensors, by deriving dry areas elevations from LiDAR data and water depth of wetted areas from aerial photos through a predictive depth-colour relationship. The methodology was applied to two different sub-reaches of the Piave River, a gravel-bed river which suffered severe flood events in 2010. Erosion and deposition patterns were identified through DEM differencing, showing a predominance of scour processes which can lead to channel instability situations. The bathymetric output was compared to other previously-derived models confirming the accuracy of the in-channel elevation estimates. Finally, a discussion on the role played by longitudinal protections during the studied flood events is proposed, focusing the attention on the incidence of two major bank erosions that removed significant volumes of stable areas.展开更多
Systematic research of the characteristics of late Quaternary activity of the middle part of Kouquan fault has been done through conducting 1∶50000 geologic mapping combining with remote sensing interpretation of spo...Systematic research of the characteristics of late Quaternary activity of the middle part of Kouquan fault has been done through conducting 1∶50000 geologic mapping combining with remote sensing interpretation of spot imaging, field validating and chronology research of the research area. Studies suggest that the middle part of Kouquan fault has had strong activity since the late Quaternary which controls the tectonic evolvement of the nearby mountains and Datong basin. The recent activity of this fault has faulted the sandy gravel layers of T1 terrace and the lower part of dark loessial soils over the terrace on the north of Chanfang village. The maximum vertical displacement is over 3m in the area between Xiaoyukou village and Louzikou village, and to the south of Dayukou village and the north of Emaokou village, the displacement decreases to 0.5m and 0.25m respectively. Based on the recent faulted landforms and combined with dating, we determined the age of recent activity of the fault in the research area to be between 7.71ka B.P. to 3.00 ka B.P. Discussions are made on this in combination with previous research.展开更多
基金Project(90715018)supported by the National Natural Science Foundation of ChinaProject(200808022)supported by the Special Fund for the Commonweal Indusry of China+1 种基金Project(08KJA560001)supported by the Key Basic Research Program of Natural Science of University in Jiangsu ProvinceProject(CX10B_170Z)supported by the Postgraduate Scientific Innovation Program in Jiangsu Province,China
文摘The laboratory tests on the post-liquefaction deformation of saturated sand-gravel composites were performed to investigate the characteristics of stress-strain relation and the dissipation of pore water pressure by the hollow cylinder apparatus. It is found that the stress-strain response and the dissipation process of pore water pressure are composed of three stages, including the low intensive strength stage, the superlinear strength recovery stage and the sublinear strength recovery stage, and the demarcation points of the curve of pore water pressure are lag behind those of the stress-strain response. The comparison results of the behaviour of large post-liquefaction deformation between saturated sand-gravel composites and Nanjing fine sand show that the low intensive strength stage and the superlinear strength recovery stage of saturated sand-gravel composites are shorter while the sublinear strength recovery stage is longer. A stress-strain model and a dissipation model of excess pore water pressure of liquefied sand-gravel composites are established, in which the initial confining pressure and the relative density can be considered synthetically. And it is found that the predicted results by the two models are in good agreement with experimental data.
文摘The magnitude of river morphological changes are better analyzed through the use of quantitative approaches, wherein resolution accuracy and uncertainty assessment are treated as crucial key-factors. In this sense, the creation of precise DEMs (Digital Elevation Models) of rivers represents an affordable tool to analyze geomorphic variations and budgets, except for wetted areas, where reliable channel digitalization can normally be obtained only using expensive bathymetric surveys. The proposed work aims at improving channel surface models without having available bathymetric sensors, by deriving dry areas elevations from LiDAR data and water depth of wetted areas from aerial photos through a predictive depth-colour relationship. The methodology was applied to two different sub-reaches of the Piave River, a gravel-bed river which suffered severe flood events in 2010. Erosion and deposition patterns were identified through DEM differencing, showing a predominance of scour processes which can lead to channel instability situations. The bathymetric output was compared to other previously-derived models confirming the accuracy of the in-channel elevation estimates. Finally, a discussion on the role played by longitudinal protections during the studied flood events is proposed, focusing the attention on the incidence of two major bank erosions that removed significant volumes of stable areas.
基金jointly funded by the National Natural Science Foundation ( Grant No. 40972143)the Key Research Project of the 11th "Five-year Plan"of China Earthquake Administration( 1520945024)
文摘Systematic research of the characteristics of late Quaternary activity of the middle part of Kouquan fault has been done through conducting 1∶50000 geologic mapping combining with remote sensing interpretation of spot imaging, field validating and chronology research of the research area. Studies suggest that the middle part of Kouquan fault has had strong activity since the late Quaternary which controls the tectonic evolvement of the nearby mountains and Datong basin. The recent activity of this fault has faulted the sandy gravel layers of T1 terrace and the lower part of dark loessial soils over the terrace on the north of Chanfang village. The maximum vertical displacement is over 3m in the area between Xiaoyukou village and Louzikou village, and to the south of Dayukou village and the north of Emaokou village, the displacement decreases to 0.5m and 0.25m respectively. Based on the recent faulted landforms and combined with dating, we determined the age of recent activity of the fault in the research area to be between 7.71ka B.P. to 3.00 ka B.P. Discussions are made on this in combination with previous research.