Diamond like carbon thin film is successfully deposited on silicon, titanium and stainless steel substrate at low temperature in a filtered vacuum arc deposition system. Arc discharges are established on a graphite ...Diamond like carbon thin film is successfully deposited on silicon, titanium and stainless steel substrate at low temperature in a filtered vacuum arc deposition system. Arc discharges are established on a graphite cathode in the system with a toroidal macroparticle filter. A cathode activating magnetic field and a filtered magnetic field to collimate the plasma beam are applied. Ion current convected by the plasma beam is measured with a negatively biased probe. It is shown that the magnetic field of the coils located on the plasma duct has a strong influence on cathode spot behavior. Orthogonally the designed experiments are carried out to optimize the deposition parameters of arc stability. Finally, the diamond like carbon thin films are studied by scanning electron microscope (SEM) and Raman spectrum.展开更多
Diamond like carbon (DLC) films was grown successfully on silicon, titanium and high speed steel (HSS) substrate at low temperature in a filtered vacuum arc deposition system. Arc discharges were established on a gra...Diamond like carbon (DLC) films was grown successfully on silicon, titanium and high speed steel (HSS) substrate at low temperature in a filtered vacuum arc deposition system. Arc discharges were established on a graphite cathode in this home built system with a toridal macroparticles filter. Ion current convected by the plasma beam was measured with a negatively biased probe. It was shown that the magnetic field of the coils located on the plasma duct has a strong influence on ion current. Scanning electron microscope (SEM), atomic force microscope (AFM) and Raman spectrum are used to study the DLC films. Tribological behaviors of the deposited film are also studied.展开更多
The spinel LiMn2O4 cathode material was synthesized with the solid-state reaction method. Four manganese compounds including electrolytic manganese dioxide (EMD), MnCO3, Mn3O4 and nano-EMD were used as Mn sources whil...The spinel LiMn2O4 cathode material was synthesized with the solid-state reaction method. Four manganese compounds including electrolytic manganese dioxide (EMD), MnCO3, Mn3O4 and nano-EMD were used as Mn sources while LiOH·H2O was used as the uniform Li source. The crystal structure characteristics of these samples produced were investigated by means of XRD, SEM, particle size distribution analysis and specific surface area testing. Their electrochemical properties were also studied by comparing their specific capacity, charge and discharge efficiency and cycle performance.展开更多
The sodium expansion curves of semi-graphitic cathode measured with the improved Rapoport-Samoilenko apparatus. The and TiB2/C composite cathode with different TiB2 contents were mathematic model of the sodium expansi...The sodium expansion curves of semi-graphitic cathode measured with the improved Rapoport-Samoilenko apparatus. The and TiB2/C composite cathode with different TiB2 contents were mathematic model of the sodium expansion was deduced on the basis of the experimental results. The sodium expansion parameter (a) and penetration rate factor (Q), were introduced into the model The model was validated with the experimental sodium expansion curves self-measured and reported. The results show that the variation tendency of the sodium expansion parameter (a) and penetration rate factor (Q) is consistent with that of the experimental curves. The model is capable of not only conveniently judging the cathode quality, but also favorably establishing a unified standard of the resistance to sodium penetration of cathode.展开更多
Olivine-type LiFePO4/C composite cathode materials were synthesized by a solid-state reaction method in an inert atmosphere. The glucose was added as conductive precursors before the formation of the crystalline phase...Olivine-type LiFePO4/C composite cathode materials were synthesized by a solid-state reaction method in an inert atmosphere. The glucose was added as conductive precursors before the formation of the crystalline phase. The effects of glucose content on the properties of as-synthesized cathode materials were investigated. The crystal structure and the electrochemical performance were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser particle-size distribution measurement and electrochemical performance testing. The material has a single crystal olivine structure with grain-sizes ca. 100-200 nm. SEM micrographs and the corresponding energy dispersive spectrometer (EDS) data confirm that the carbon particulates produced by glucose pyrogenation are uniformly dispersed among the LiFePO4 grains, ensuring a good electronic contact. Impedance spectroscopy was used to investigate the ohmic and kinetic contributions to the cell performance. It is found that increasing the carbon content leads to a reduction of the cell impedance due to the reduction of the charge transfer resistance. The galvanostatically charge and discharge tests show that the material obtained by adding 10% C (by mass) gives a maximum discharge capacity of 140.8mA·h·g^-1 at the same rate (C/10). The material also displays a more stable cycle-life than the others.展开更多
The mechanism of stability of Co-doped spinel λ-MnO_2 that is referred to as spinel Li_xMn_2O_4 (x=0) was studied by using the first-principle calculation method. The total energy and formation enthalpy can be decrea...The mechanism of stability of Co-doped spinel λ-MnO_2 that is referred to as spinel Li_xMn_2O_4 (x=0) was studied by using the first-principle calculation method. The total energy and formation enthalpy can be decreased remarkably due to the Co substation, resulting in a more stable structure of λ-Mn_xCr_(2-x)O_4. The bond order and DOS analysis were given in detail to explain the nature of stability improvement. The calculated results show that as the content of Co dopant increases, the bond order of Mn—O becomes larger and the peak of density of states around Fermi level shifts toward lower energy. The charge density distribution illustrates that the Mn—O bonding is ionic and partially covalent, and the covalent Mn-O bonding becomes stronger with the increase of Co dopant content. The results confirm that the Codoping will enhance the stability of λ-MnO_2 and hence improve the electrochemistry performance of Li_xMn_2O_4.展开更多
Manipulating the chemical reactivity of graphene toward oxygen reduced reduction(ORR)is of particular interest for both fundamental research and practical application in fuel cell.Deposing graphene on selected substra...Manipulating the chemical reactivity of graphene toward oxygen reduced reduction(ORR)is of particular interest for both fundamental research and practical application in fuel cell.Deposing graphene on selected substrate provides a structure-intact strategy to enhance its chemical reactivity due to substrate-induced charge and interface effect.Here,we report the graphene deposited on one-dimensional electride Y5Si3 as an effective ORR catalyst in acidic media.Thermodynamic calculations suggest that depositing graphene on electride materials can facilitate the protonation of O2,which is the rate-determining step based on the four-electron reaction pathway and thus promote the ORR activity.Further electronic calculations reveal that low work function(3.5 eV),superior electrical conductivity and slight charge transfer from substrate to graphene result in the enhanced ORR performance of graphene.These findings shed light on the rational design of ORR catalysts based on graphitic materials and emphasize the critical role of substrates for energy-related electrochemical reactions.展开更多
In situ capping is an attractive and cost-effective method for remediation of contaminated sediments,but few studies on enhancing contaminant degradation in sediment caps have been reported,especially for chlorinated ...In situ capping is an attractive and cost-effective method for remediation of contaminated sediments,but few studies on enhancing contaminant degradation in sediment caps have been reported,especially for chlorinated benzenes.Electrically enhanced bioactive barrier is a new process for in situ remediation for reducible compounds in soil or sediments.The primary objective of this study is to determine if electrodes in sediment could create a redox gradient and provide electron acceptor/donor to stimulate degradation of chlorinated contaminant.The results demonstrate that graphite electrodes lead to sustainable evolution of hydrogen,displaying zero-order kinetics in the initial stages with different voltages.The constant rates of hydrogen evolution at 3,4,and 5 V are1.05,2.54,and 4.3 nmol·L 1·d 1,respectively.Even higher voltage can produce more hydrogen,but it could not keep long time because the over potentials on electrode surfaces prevent its function.The study shows that 4 V is more appropriate for hydrogen evolution.The measured and evaluated concentration of 1,2,3,5-tetrachlorobenzene in pore water of sediment and concentration of sulfate show that dechlorination is inhibited at higher concentration of sulfate.展开更多
The paraffin wax microemulsion was prepared from fully refined paraffin wax No.58-60 in the presence of a nonionic surfactant and an anionic surfactant.The influence of manufacturing parameters on the particle diamete...The paraffin wax microemulsion was prepared from fully refined paraffin wax No.58-60 in the presence of a nonionic surfactant and an anionic surfactant.The influence of manufacturing parameters on the particle diameter of paraffin wax microemulsion included the quantity of the emulsifier,the temperature and emulsification time,the stirring speed,the pH value and the auxiliary ingredient(cosurfactant).The test results showed that the temperature of emulsification had little effect on the particle size of paraffin wax microemulsion in a temperature range of 75-85 ℃.Other manufacturing parameters all had a great effect on the particle size of paraffin wax microemulsion.The optimum preparation conditions included:a w(emulsifier) of 6%,an emulsification temperature of 80 ℃,an emulsification time of 40 min,a pH value of about 8,and a stirring speed of 600 r/min,with n-amyl alcohol serving as the co-surfactant.Under these conditions,a translucent and baby blue paraffin wax emulsion was prepared with its particle size equating to 97 nm.展开更多
Objective: We explored the expression of coxsackie and adenovirus receptor (CAR) in small cell lung cancer (SCLC) tissue. Methods: CAR expression in 31 SCLC was assessed in formaldehyde-fixed, paraffin-embedded tissue...Objective: We explored the expression of coxsackie and adenovirus receptor (CAR) in small cell lung cancer (SCLC) tissue. Methods: CAR expression in 31 SCLC was assessed in formaldehyde-fixed, paraffin-embedded tissue according to the EnVision immunohistochemistry procedure, while 3 samples of surgical specimens of non-malignant lung disease were taken as the negative control. Results: We observed that the expression of CAR was detectable positive in all the 31 cases from the small cell lung cancer tissue, in contrasting that non-malignant lung tissue control. Conclusion: The high expression of CAR appeared in SCLC tissue indicates that it play an important role in of adenovirus vector-based gene therapy in SCLC.展开更多
Low-cost, highly efficient catalysts for hydrogen evolution reaction(HER) are very important to advance energy economy based on clean hydrogen gas. Intensive studies on two-dimensional molybdenum disulfides(2 D Mo S2)...Low-cost, highly efficient catalysts for hydrogen evolution reaction(HER) are very important to advance energy economy based on clean hydrogen gas. Intensive studies on two-dimensional molybdenum disulfides(2 D Mo S2) have been conducted due to their remarkable catalytic properties.However, most of the reported syntheses are time consuming,complicated and less efficient. The present work demonstrates the production of Mo S2/graphene catalyst via an ultra-fast(60 s) microwave-initiated approach. High specific surface area and conductivity of graphene delivers a favorable conductive network for the growth of Mo S2 nanosheets, along with rapid charge transfer kinetics. As-produced Mo S2/graphene nanocomposites exhibit superior electrocatalytic activity for the HER in acidic medium, with a low onset potential of62 m V, high cathodic currents and a Tafel slope of43.3 m V/decade. Beyond excellent catalytic activity, Mo S2/graphene reveals long cycling stability with a very high cathodic current density of around 1000 m A cm^-2 at an overpotential of 250 m V. Moreover, the Mo S2/graphene-catalyst exhibits outstanding HER activities in a temperature range of 30 to 120°C with low activation energy of36.51 k J mol^-1, providing the opportunity of practical scalable processing.展开更多
Graphene dispersions in low-boiling-point green solvents have wide applications in coatings,conducting inks,batteries,electronics and solar cells.Two three-dimensional(3D)cathode interfacial materials(CIMs)(1,3,5,7,9,...Graphene dispersions in low-boiling-point green solvents have wide applications in coatings,conducting inks,batteries,electronics and solar cells.Two three-dimensional(3D)cathode interfacial materials(CIMs)(1,3,5,7,9,11,13,15-octa-(9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-vinylpentacyclo-octasiloxane)(POSSFN)and(1,3,5,7-tetra-(9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-adamantane)(ADMAFN)are excellent surfactants for dispersing graphene in ethanol at the concentration of 0.97–1.18 mg mL−1,in agreement with their calculated large adsorption energies on graphene.The results of electron spin resonance,Raman,scanning Kelvin probe microscopy and X-ray photoelectron spectroscopy measurements indicate that the amino groups could n-dope graphene or form dipole interaction with graphene.The two 3D-surfactant-based graphene composites(POSSFN-G and ADMAFN-G)can work as high-performance CIMs in organic solar cells(OSCs),which improve the power conversion efficiency(PCE)of the OSCs based on PM6:Y6 to 15.9%–16.1%.ADMAFN forms dipole interaction with graphene in ADMAFN-G and the composite CIM delivers high PCE of 16.11%in the OSCs,while POSSFN forms n-doped composition with graphene in POSSFN-G which works well as thicker CIM film in the OSCs.展开更多
Cathode samples of nano-diamond by graphitization pretreatment with different temperatures were fabricated by electrophoresis, then the structures and morphologies of the cathode samples were characterized by scanning...Cathode samples of nano-diamond by graphitization pretreatment with different temperatures were fabricated by electrophoresis, then the structures and morphologies of the cathode samples were characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD), and the field emission tests were conducted. The effects of graphitization pretreatment on the field emission characteristics of nano-diamond cathode surface on titanium substrate are studied. The results indicate that the surface morphologies of nano-diamond cathode samples after graphitization pretreatment change a lot, and the field emission characteristics in low-voltage area are improved obviously. However, in high-voltage area, the curve distortion happens, and it doesn't conform the mechanism of field emission characteristics.展开更多
The xonotlite fibers were synthesized via the hydrothermal synthesis method with CaO and SiO_2 as the raw materials and the molar ratio of Si/Ca of 1.0. Effect of anions from various calcium sources on the microstruct...The xonotlite fibers were synthesized via the hydrothermal synthesis method with CaO and SiO_2 as the raw materials and the molar ratio of Si/Ca of 1.0. Effect of anions from various calcium sources on the microstructure of the xonotlite fibers is studied in this paper. These obtained products were characterized by X-ray diffraction(XRD), transmission electron microscope(TEM) and scanning electron microscope(SEM) techniques to investigate their crystalline phase, crystal structure and morphology. The results indicate that anion from various calcium sources has little influence on the crystalline phases of xonotlite fibers but poses a great impact on their morphologies. Xonotlite fibers with single crystal characteristics and large aspect ratio of 50—100 were successfully fabricated from CaCl_2 as calcium material at 225 °C for 15 h. The existence of Cl-anion in the CaO-SiO_2-H_2O system significantly contributes to the formation of xonotlite crystal.展开更多
文摘Diamond like carbon thin film is successfully deposited on silicon, titanium and stainless steel substrate at low temperature in a filtered vacuum arc deposition system. Arc discharges are established on a graphite cathode in the system with a toroidal macroparticle filter. A cathode activating magnetic field and a filtered magnetic field to collimate the plasma beam are applied. Ion current convected by the plasma beam is measured with a negatively biased probe. It is shown that the magnetic field of the coils located on the plasma duct has a strong influence on cathode spot behavior. Orthogonally the designed experiments are carried out to optimize the deposition parameters of arc stability. Finally, the diamond like carbon thin films are studied by scanning electron microscope (SEM) and Raman spectrum.
文摘Diamond like carbon (DLC) films was grown successfully on silicon, titanium and high speed steel (HSS) substrate at low temperature in a filtered vacuum arc deposition system. Arc discharges were established on a graphite cathode in this home built system with a toridal macroparticles filter. Ion current convected by the plasma beam was measured with a negatively biased probe. It was shown that the magnetic field of the coils located on the plasma duct has a strong influence on ion current. Scanning electron microscope (SEM), atomic force microscope (AFM) and Raman spectrum are used to study the DLC films. Tribological behaviors of the deposited film are also studied.
基金Supported by the National Natural Science Foundation of China (No. 20273047).
文摘The spinel LiMn2O4 cathode material was synthesized with the solid-state reaction method. Four manganese compounds including electrolytic manganese dioxide (EMD), MnCO3, Mn3O4 and nano-EMD were used as Mn sources while LiOH·H2O was used as the uniform Li source. The crystal structure characteristics of these samples produced were investigated by means of XRD, SEM, particle size distribution analysis and specific surface area testing. Their electrochemical properties were also studied by comparing their specific capacity, charge and discharge efficiency and cycle performance.
基金Project(2005CB623703) supported by the Major State Basic Research and Development Program of ChinaProject(2008AA030502) supported by the National High-Tech Research and Development Program of ChinaProject(GUIKEJI0639032) supported by the Science Fund Project of Guangxi Province, China
文摘The sodium expansion curves of semi-graphitic cathode measured with the improved Rapoport-Samoilenko apparatus. The and TiB2/C composite cathode with different TiB2 contents were mathematic model of the sodium expansion was deduced on the basis of the experimental results. The sodium expansion parameter (a) and penetration rate factor (Q), were introduced into the model The model was validated with the experimental sodium expansion curves self-measured and reported. The results show that the variation tendency of the sodium expansion parameter (a) and penetration rate factor (Q) is consistent with that of the experimental curves. The model is capable of not only conveniently judging the cathode quality, but also favorably establishing a unified standard of the resistance to sodium penetration of cathode.
文摘Olivine-type LiFePO4/C composite cathode materials were synthesized by a solid-state reaction method in an inert atmosphere. The glucose was added as conductive precursors before the formation of the crystalline phase. The effects of glucose content on the properties of as-synthesized cathode materials were investigated. The crystal structure and the electrochemical performance were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser particle-size distribution measurement and electrochemical performance testing. The material has a single crystal olivine structure with grain-sizes ca. 100-200 nm. SEM micrographs and the corresponding energy dispersive spectrometer (EDS) data confirm that the carbon particulates produced by glucose pyrogenation are uniformly dispersed among the LiFePO4 grains, ensuring a good electronic contact. Impedance spectroscopy was used to investigate the ohmic and kinetic contributions to the cell performance. It is found that increasing the carbon content leads to a reduction of the cell impedance due to the reduction of the charge transfer resistance. The galvanostatically charge and discharge tests show that the material obtained by adding 10% C (by mass) gives a maximum discharge capacity of 140.8mA·h·g^-1 at the same rate (C/10). The material also displays a more stable cycle-life than the others.
基金Project(20376086) supported by National Natural Science Foundation of China
文摘The mechanism of stability of Co-doped spinel λ-MnO_2 that is referred to as spinel Li_xMn_2O_4 (x=0) was studied by using the first-principle calculation method. The total energy and formation enthalpy can be decreased remarkably due to the Co substation, resulting in a more stable structure of λ-Mn_xCr_(2-x)O_4. The bond order and DOS analysis were given in detail to explain the nature of stability improvement. The calculated results show that as the content of Co dopant increases, the bond order of Mn—O becomes larger and the peak of density of states around Fermi level shifts toward lower energy. The charge density distribution illustrates that the Mn—O bonding is ionic and partially covalent, and the covalent Mn-O bonding becomes stronger with the increase of Co dopant content. The results confirm that the Codoping will enhance the stability of λ-MnO_2 and hence improve the electrochemistry performance of Li_xMn_2O_4.
基金supported by the National Natural Science Foundation of China (No.21573204 and No.21421063)Ministry of Science and Technology of China (No.2016YFA0200602)+2 种基金Anhui Initiative in Quantum Information Technologies, Fundamental Research Funds for the Central UniversitiesNational Program for Support of Top-notch Young Professional, Chinese Academy of Sciences Interdisciplinary Innovation TeamSuper Computer Center of USTC supercomputing center and CAS supercomputing center
文摘Manipulating the chemical reactivity of graphene toward oxygen reduced reduction(ORR)is of particular interest for both fundamental research and practical application in fuel cell.Deposing graphene on selected substrate provides a structure-intact strategy to enhance its chemical reactivity due to substrate-induced charge and interface effect.Here,we report the graphene deposited on one-dimensional electride Y5Si3 as an effective ORR catalyst in acidic media.Thermodynamic calculations suggest that depositing graphene on electride materials can facilitate the protonation of O2,which is the rate-determining step based on the four-electron reaction pathway and thus promote the ORR activity.Further electronic calculations reveal that low work function(3.5 eV),superior electrical conductivity and slight charge transfer from substrate to graphene result in the enhanced ORR performance of graphene.These findings shed light on the rational design of ORR catalysts based on graphitic materials and emphasize the critical role of substrates for energy-related electrochemical reactions.
基金Supported by the National Natural Science Foundation of China(51108317) the Municipal Natural Science Foundation of Tianjin(12JCQNJC05400)
文摘In situ capping is an attractive and cost-effective method for remediation of contaminated sediments,but few studies on enhancing contaminant degradation in sediment caps have been reported,especially for chlorinated benzenes.Electrically enhanced bioactive barrier is a new process for in situ remediation for reducible compounds in soil or sediments.The primary objective of this study is to determine if electrodes in sediment could create a redox gradient and provide electron acceptor/donor to stimulate degradation of chlorinated contaminant.The results demonstrate that graphite electrodes lead to sustainable evolution of hydrogen,displaying zero-order kinetics in the initial stages with different voltages.The constant rates of hydrogen evolution at 3,4,and 5 V are1.05,2.54,and 4.3 nmol·L 1·d 1,respectively.Even higher voltage can produce more hydrogen,but it could not keep long time because the over potentials on electrode surfaces prevent its function.The study shows that 4 V is more appropriate for hydrogen evolution.The measured and evaluated concentration of 1,2,3,5-tetrachlorobenzene in pore water of sediment and concentration of sulfate show that dechlorination is inhibited at higher concentration of sulfate.
基金supported by The National Natural Science Funds (Project No. 21076025)
文摘The paraffin wax microemulsion was prepared from fully refined paraffin wax No.58-60 in the presence of a nonionic surfactant and an anionic surfactant.The influence of manufacturing parameters on the particle diameter of paraffin wax microemulsion included the quantity of the emulsifier,the temperature and emulsification time,the stirring speed,the pH value and the auxiliary ingredient(cosurfactant).The test results showed that the temperature of emulsification had little effect on the particle size of paraffin wax microemulsion in a temperature range of 75-85 ℃.Other manufacturing parameters all had a great effect on the particle size of paraffin wax microemulsion.The optimum preparation conditions included:a w(emulsifier) of 6%,an emulsification temperature of 80 ℃,an emulsification time of 40 min,a pH value of about 8,and a stirring speed of 600 r/min,with n-amyl alcohol serving as the co-surfactant.Under these conditions,a translucent and baby blue paraffin wax emulsion was prepared with its particle size equating to 97 nm.
基金Supported by a grant from the Society Development Foundation of Jiangsu (No. BS2007025)
文摘Objective: We explored the expression of coxsackie and adenovirus receptor (CAR) in small cell lung cancer (SCLC) tissue. Methods: CAR expression in 31 SCLC was assessed in formaldehyde-fixed, paraffin-embedded tissue according to the EnVision immunohistochemistry procedure, while 3 samples of surgical specimens of non-malignant lung disease were taken as the negative control. Results: We observed that the expression of CAR was detectable positive in all the 31 cases from the small cell lung cancer tissue, in contrasting that non-malignant lung tissue control. Conclusion: The high expression of CAR appeared in SCLC tissue indicates that it play an important role in of adenovirus vector-based gene therapy in SCLC.
基金supported by Auburn UniversityIntramural Grants Program (AU-IGP)
文摘Low-cost, highly efficient catalysts for hydrogen evolution reaction(HER) are very important to advance energy economy based on clean hydrogen gas. Intensive studies on two-dimensional molybdenum disulfides(2 D Mo S2) have been conducted due to their remarkable catalytic properties.However, most of the reported syntheses are time consuming,complicated and less efficient. The present work demonstrates the production of Mo S2/graphene catalyst via an ultra-fast(60 s) microwave-initiated approach. High specific surface area and conductivity of graphene delivers a favorable conductive network for the growth of Mo S2 nanosheets, along with rapid charge transfer kinetics. As-produced Mo S2/graphene nanocomposites exhibit superior electrocatalytic activity for the HER in acidic medium, with a low onset potential of62 m V, high cathodic currents and a Tafel slope of43.3 m V/decade. Beyond excellent catalytic activity, Mo S2/graphene reveals long cycling stability with a very high cathodic current density of around 1000 m A cm^-2 at an overpotential of 250 m V. Moreover, the Mo S2/graphene-catalyst exhibits outstanding HER activities in a temperature range of 30 to 120°C with low activation energy of36.51 k J mol^-1, providing the opportunity of practical scalable processing.
基金the National Natural Science Foundation of China(51820105003,51863002 and 51973042)the Excellent Young Scientific and Technological Talents of Guizhou,China(QKHPTRC[2019]5652)。
文摘Graphene dispersions in low-boiling-point green solvents have wide applications in coatings,conducting inks,batteries,electronics and solar cells.Two three-dimensional(3D)cathode interfacial materials(CIMs)(1,3,5,7,9,11,13,15-octa-(9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-vinylpentacyclo-octasiloxane)(POSSFN)and(1,3,5,7-tetra-(9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-adamantane)(ADMAFN)are excellent surfactants for dispersing graphene in ethanol at the concentration of 0.97–1.18 mg mL−1,in agreement with their calculated large adsorption energies on graphene.The results of electron spin resonance,Raman,scanning Kelvin probe microscopy and X-ray photoelectron spectroscopy measurements indicate that the amino groups could n-dope graphene or form dipole interaction with graphene.The two 3D-surfactant-based graphene composites(POSSFN-G and ADMAFN-G)can work as high-performance CIMs in organic solar cells(OSCs),which improve the power conversion efficiency(PCE)of the OSCs based on PM6:Y6 to 15.9%–16.1%.ADMAFN forms dipole interaction with graphene in ADMAFN-G and the composite CIM delivers high PCE of 16.11%in the OSCs,while POSSFN forms n-doped composition with graphene in POSSFN-G which works well as thicker CIM film in the OSCs.
基金supported by the PH.D Start-up Foundation of Yan’an University(No.YD 2010-04)the Special Foundation of Yan’an University(No.YDZD 2011-01)+3 种基金the 2014 Education and Innovation Project of Yan’an University for Graduate Studentthe 2014 Local University National Training Project of Innovation and Entrepreneurship for Undergraduates(No.201410719023)the Special Research Funds for Discipline Construction of High Level University Construction(No.2015SXTS02)the Natural Science Foundation of Shaanxi Province(No.2014JM2-5058)
文摘Cathode samples of nano-diamond by graphitization pretreatment with different temperatures were fabricated by electrophoresis, then the structures and morphologies of the cathode samples were characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD), and the field emission tests were conducted. The effects of graphitization pretreatment on the field emission characteristics of nano-diamond cathode surface on titanium substrate are studied. The results indicate that the surface morphologies of nano-diamond cathode samples after graphitization pretreatment change a lot, and the field emission characteristics in low-voltage area are improved obviously. However, in high-voltage area, the curve distortion happens, and it doesn't conform the mechanism of field emission characteristics.
基金supported by the National Natural Science Foundation of China(No.21666007)the Science Technology Foundation of Guizhou Province(No.2014-2007)the Program for “Hundred” High-Level Talents in Guizhou Province(No.2016-5655)
文摘The xonotlite fibers were synthesized via the hydrothermal synthesis method with CaO and SiO_2 as the raw materials and the molar ratio of Si/Ca of 1.0. Effect of anions from various calcium sources on the microstructure of the xonotlite fibers is studied in this paper. These obtained products were characterized by X-ray diffraction(XRD), transmission electron microscope(TEM) and scanning electron microscope(SEM) techniques to investigate their crystalline phase, crystal structure and morphology. The results indicate that anion from various calcium sources has little influence on the crystalline phases of xonotlite fibers but poses a great impact on their morphologies. Xonotlite fibers with single crystal characteristics and large aspect ratio of 50—100 were successfully fabricated from CaCl_2 as calcium material at 225 °C for 15 h. The existence of Cl-anion in the CaO-SiO_2-H_2O system significantly contributes to the formation of xonotlite crystal.