The shales of the Qiongzhusi Formation and Wufeng-Longmaxi Formations at Sichuan Basin and surrounding areas are presently the most important stratigraphic horizons for shale gas exploration and development in China. ...The shales of the Qiongzhusi Formation and Wufeng-Longmaxi Formations at Sichuan Basin and surrounding areas are presently the most important stratigraphic horizons for shale gas exploration and development in China. However, the regional characteristics of the seismic elastic properties need to be better determined. The ultrasonic velocities of shale samples were measured under dry conditions and the relations between elastic properties and petrology were systemically analyzed. The results suggest that 1) the effective porosity is positively correlated with clay content but negatively correlated with brittle minerals, 2) the dry shale matrix consists of clays, quartz, feldspars, and carbonates, and 3) organic matter and pyrite are in the pore spaces, weakly coupled with the shale matrix. Thus, by assuming that all connected pores are only present in the clay minerals and using the Gassmann substitution method to calculate the elastic effect of organic matter and pyrite in the pores, a relatively simple rock-physics model was constructed by combining the self-consistent approximation (SCA), the differential effective medium (DEM), and Gassmann's equation. In addition, the effective pore aspect ratio was adopted from the sample averages or estimated from the carbonate content. The proposed model was used to predict the P-wave velocities and generally matched the ultrasonic measurements very well.展开更多
The Longmenshan thrust belt(LMTB) is one of the best natural laboratories for thin-skinned tectonics and has developed a series of NE-SW trending fold-and-thrust structures represented by a series of nappes and klippe...The Longmenshan thrust belt(LMTB) is one of the best natural laboratories for thin-skinned tectonics and has developed a series of NE-SW trending fold-and-thrust structures represented by a series of nappes and klippes, exemplified by the Tangbazi and Bailuding klippe. However, the timing and emplacement mechanism of these klippes are still in dispute. Three possible mechanisms have been proposed:(1) a Mesozoic-Cenozoic southeastward thrusting,(2) a Cenozoic gravity gliding, and(3) glacial deposition. Almost all of these klippes are tectonic and overlaid on folded Late Triassic sandstone except the Tangbazi klippe, which is located in the center of the LMTB and has a narrow tail extending southeastward and covering Jurassic-Quaternary rocks. This geometric relationship is considered the most important stratigraphic evidence to support the post-Cenozoic emplacement of the Longmenshan klippe. Our structural and petrological observations show that the rocks at the front of the Tangbazi and Bailuding structures are brecciated limestone, which is assumed to have been generated by a gravitational collapse and is not characteristic of the massive Permian strata. Artemisia pollen, which has been exclusively recognized in post-Late Eocene strata in Central Asia, was found in the matrix of this brecciated limestone. Therefore, our discovery indicates that the brecciated limestone was deposited after the Late Eocene rather than during the Permian as annotated on the geological map. In contrast, unbrecciated, massive Permian limestone overlaid on the folded Late Triassic rocks. Hence, the anomalous relationship of Permian strata overlaying Late Triassic rocks cannot be evidence of Cenozoic emplacement. According to currently recognized bulk strata relationships, we can only be sure that the klippe was emplaced in the post Late Triassic. The petrological characteristics of the brecciated limestone show that it was crumbled before the re-sedimentation of the breccia, implying that the LMTB might have experienced a rapid uplift during the Late Eocene.展开更多
Using Fourier transform infrared spectroscopy(FTIR),we measured water contents in quartz and feldspar for four kinds of felsic rocks,i.e.,undeformed granite,banded granitic gneiss,fine-grained felsic mylonite,and fine...Using Fourier transform infrared spectroscopy(FTIR),we measured water contents in quartz and feldspar for four kinds of felsic rocks,i.e.,undeformed granite,banded granitic gneiss,fine-grained felsic mylonite,and fine-grained quartz-mica schist,collected from Pengguan Complex and Kangding Complex in the Longmenshan tectonic zone,Sichuan,China.The absorbance spectra suggest that water in coarse-grained quartz and feldspar of undeformed granite and banded granitic gneiss occurs mainly as hydroxyl in crystal defects,and water in most of fine-grained quartz and feldspar of felsic mylonite is molecular water in inclusions and liquid-type water in grain boundaries,but in some cases it still occurs as hydroxyl in crystal defects.Water content of quartz in undeformed granite is 0.001 wt%-0.009 wt %,and that of feldspar 0.005 wt%-0.02 wt%.The banded granitic gneiss shows water contents of 0.002 wt%-0.011 wt% in quartz and 0.012 wt%-0.036 wt% in feldspar.Quartz ribbon and feldspar ribbon in fine-grained felsic mylonite show that their water contents are similar to those of coarse-grained quartz and feldspar in granite,0.002 wt%-0.011 wt%,and 0.004 wt%-0.02 wt%,respectively.Water contents of fine-grained quartz and feldspar are respectively 0.004 wt%-0.02 wt% and 0.012 wt%-0.06 wt%.Water content of quartz in fine-grained quartz-mica schist is 0.007 wt%-0.15 wt%.Water-bearing minerals display much higher water contents than those of nominally anhydrous minerals,and the percentage of water-bearing minerals in felsic rocks increases with the strain of rocks.These new data indicate that hydroxyl in crystal defects has basically not been released during the shear deformation,and on the contrary,the increase in molecular water in inclusions and liquid-type water in grain boundaries as well as water-bearing minerals after shear deformation leads to a significant increase of the water content in deformed rocks.Based on data of creep tests,it is inferred here that the fine-grained mylonites with more water have much lower strength than that of the weakly deformed coarse-grained rocks in the middle crust,and this indicates that trace amount of water significantly helped develop the ductile shear zone.展开更多
基金sponsored by the National Natural Science Foundation of China(No.41274185 and 41676032)
文摘The shales of the Qiongzhusi Formation and Wufeng-Longmaxi Formations at Sichuan Basin and surrounding areas are presently the most important stratigraphic horizons for shale gas exploration and development in China. However, the regional characteristics of the seismic elastic properties need to be better determined. The ultrasonic velocities of shale samples were measured under dry conditions and the relations between elastic properties and petrology were systemically analyzed. The results suggest that 1) the effective porosity is positively correlated with clay content but negatively correlated with brittle minerals, 2) the dry shale matrix consists of clays, quartz, feldspars, and carbonates, and 3) organic matter and pyrite are in the pore spaces, weakly coupled with the shale matrix. Thus, by assuming that all connected pores are only present in the clay minerals and using the Gassmann substitution method to calculate the elastic effect of organic matter and pyrite in the pores, a relatively simple rock-physics model was constructed by combining the self-consistent approximation (SCA), the differential effective medium (DEM), and Gassmann's equation. In addition, the effective pore aspect ratio was adopted from the sample averages or estimated from the carbonate content. The proposed model was used to predict the P-wave velocities and generally matched the ultrasonic measurements very well.
基金the National Natural Science Foundation of China (Grant Nos. 41372028, 41225009 & 41472193)the Project of Major State Special Research on Petroleum (Grant No. 2011ZX05008-001)
文摘The Longmenshan thrust belt(LMTB) is one of the best natural laboratories for thin-skinned tectonics and has developed a series of NE-SW trending fold-and-thrust structures represented by a series of nappes and klippes, exemplified by the Tangbazi and Bailuding klippe. However, the timing and emplacement mechanism of these klippes are still in dispute. Three possible mechanisms have been proposed:(1) a Mesozoic-Cenozoic southeastward thrusting,(2) a Cenozoic gravity gliding, and(3) glacial deposition. Almost all of these klippes are tectonic and overlaid on folded Late Triassic sandstone except the Tangbazi klippe, which is located in the center of the LMTB and has a narrow tail extending southeastward and covering Jurassic-Quaternary rocks. This geometric relationship is considered the most important stratigraphic evidence to support the post-Cenozoic emplacement of the Longmenshan klippe. Our structural and petrological observations show that the rocks at the front of the Tangbazi and Bailuding structures are brecciated limestone, which is assumed to have been generated by a gravitational collapse and is not characteristic of the massive Permian strata. Artemisia pollen, which has been exclusively recognized in post-Late Eocene strata in Central Asia, was found in the matrix of this brecciated limestone. Therefore, our discovery indicates that the brecciated limestone was deposited after the Late Eocene rather than during the Permian as annotated on the geological map. In contrast, unbrecciated, massive Permian limestone overlaid on the folded Late Triassic rocks. Hence, the anomalous relationship of Permian strata overlaying Late Triassic rocks cannot be evidence of Cenozoic emplacement. According to currently recognized bulk strata relationships, we can only be sure that the klippe was emplaced in the post Late Triassic. The petrological characteristics of the brecciated limestone show that it was crumbled before the re-sedimentation of the breccia, implying that the LMTB might have experienced a rapid uplift during the Late Eocene.
基金supported by National Natural Science Foundation of China(Grant No.40972146)State Key Laboratory of Earthquake Dynamics(Grant Nos. LED2009A01,LED2008A03)
文摘Using Fourier transform infrared spectroscopy(FTIR),we measured water contents in quartz and feldspar for four kinds of felsic rocks,i.e.,undeformed granite,banded granitic gneiss,fine-grained felsic mylonite,and fine-grained quartz-mica schist,collected from Pengguan Complex and Kangding Complex in the Longmenshan tectonic zone,Sichuan,China.The absorbance spectra suggest that water in coarse-grained quartz and feldspar of undeformed granite and banded granitic gneiss occurs mainly as hydroxyl in crystal defects,and water in most of fine-grained quartz and feldspar of felsic mylonite is molecular water in inclusions and liquid-type water in grain boundaries,but in some cases it still occurs as hydroxyl in crystal defects.Water content of quartz in undeformed granite is 0.001 wt%-0.009 wt %,and that of feldspar 0.005 wt%-0.02 wt%.The banded granitic gneiss shows water contents of 0.002 wt%-0.011 wt% in quartz and 0.012 wt%-0.036 wt% in feldspar.Quartz ribbon and feldspar ribbon in fine-grained felsic mylonite show that their water contents are similar to those of coarse-grained quartz and feldspar in granite,0.002 wt%-0.011 wt%,and 0.004 wt%-0.02 wt%,respectively.Water contents of fine-grained quartz and feldspar are respectively 0.004 wt%-0.02 wt% and 0.012 wt%-0.06 wt%.Water content of quartz in fine-grained quartz-mica schist is 0.007 wt%-0.15 wt%.Water-bearing minerals display much higher water contents than those of nominally anhydrous minerals,and the percentage of water-bearing minerals in felsic rocks increases with the strain of rocks.These new data indicate that hydroxyl in crystal defects has basically not been released during the shear deformation,and on the contrary,the increase in molecular water in inclusions and liquid-type water in grain boundaries as well as water-bearing minerals after shear deformation leads to a significant increase of the water content in deformed rocks.Based on data of creep tests,it is inferred here that the fine-grained mylonites with more water have much lower strength than that of the weakly deformed coarse-grained rocks in the middle crust,and this indicates that trace amount of water significantly helped develop the ductile shear zone.