Based on the complexity and dynamic random analysis of machine noise source in mine heading face, this article established the noise pressure mathematical model of noise propagation in mine laneway of different noise ...Based on the complexity and dynamic random analysis of machine noise source in mine heading face, this article established the noise pressure mathematical model of noise propagation in mine laneway of different noise sources, carried out noise propagation numerical simulation in long space, and revealed noise propagation law of more radiated noise sources in the mine roadway. The results show that, under conditions that the total noise power is always the same, regardless of point source, surface noise source, or body noise source, the corresponding noise attenuation trend along the mine laneway and attenuation curve shape are basically the same. However, the attenuation velocity corresponding to complex stereo noise source is slower than single point source and the noise pressure value is higher than the single point source. The actual noise of measured values is close to the theoretical value or, say, there is little error for complex stereo noise source, whereas the error to single point source and surface noise is higher, respectively.展开更多
基金Supported by the National Natural Science Foundation of China (50975087) the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Ministry of Education, China ([2009] 1590) the Key Research Project of Hunan Province Office of Education (09A026)
文摘Based on the complexity and dynamic random analysis of machine noise source in mine heading face, this article established the noise pressure mathematical model of noise propagation in mine laneway of different noise sources, carried out noise propagation numerical simulation in long space, and revealed noise propagation law of more radiated noise sources in the mine roadway. The results show that, under conditions that the total noise power is always the same, regardless of point source, surface noise source, or body noise source, the corresponding noise attenuation trend along the mine laneway and attenuation curve shape are basically the same. However, the attenuation velocity corresponding to complex stereo noise source is slower than single point source and the noise pressure value is higher than the single point source. The actual noise of measured values is close to the theoretical value or, say, there is little error for complex stereo noise source, whereas the error to single point source and surface noise is higher, respectively.