期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于物联网的矿井瓦斯智能监测系统关键技术浅析 被引量:1
1
作者 毛馨凯 《科技视界》 2023年第34期68-72,共5页
为了避免六家煤矿由于瓦斯超限导致安全事故发生,通过工业物联网技术实现矿井瓦斯参数的采集、传输、应用,利用大数据和云计算等先进手段,结合煤矿需求,实现对瓦斯各参数的实时监测,对瓦斯灾害进行实时预测和异常预警,切实保障了煤矿的... 为了避免六家煤矿由于瓦斯超限导致安全事故发生,通过工业物联网技术实现矿井瓦斯参数的采集、传输、应用,利用大数据和云计算等先进手段,结合煤矿需求,实现对瓦斯各参数的实时监测,对瓦斯灾害进行实时预测和异常预警,切实保障了煤矿的安全生产。 展开更多
关键词 瓦斯超限 工业物联网技术 矿井瓦斯参数 大数据 云计算
下载PDF
煤矿通风安全管理在信息化管理工作中的应用 被引量:1
2
作者 周平 《中国高新技术企业》 2017年第11期297-298,共2页
基于目前煤矿通风安全管理过程中存在的问题影响,文章以实际煤矿企业为例,分析了信息化技术应用于煤矿通风安全管理过程中的原则,并提出了实践措施方法,其目的是为相关建设者提供一些理论依据。
关键词 煤矿通风 安全管理 通风作业防火 通风机 矿井瓦斯参数
下载PDF
Study on multi-component combustible gas explosive characteristics of high gas mine 被引量:2
3
作者 周西华 王继仁 +2 位作者 李昕 李诚玉 胡春岩 《Journal of Coal Science & Engineering(China)》 2008年第4期538-541,共4页
Studied on multi-component combustible gas,methane mainly,explosion char- acteristics of high gas mine,obtained the rules of gas explosive limit that influenced by environment temperature,pressure,concentration of oxy... Studied on multi-component combustible gas,methane mainly,explosion char- acteristics of high gas mine,obtained the rules of gas explosive limit that influenced by environment temperature,pressure,concentration of oxygen,other combustible gas,coal dust,energy of fire source,and the inert gas,proposed a new method of divide gas explo- sive triangle partition,and gave new partition linear equations.The gas explosive triangle and its new partition has important directive significance in distinguishing if the fire area has a gas explosion when sealing or opening fire area,or fire extinguishing in sealed fire area,and judging if there will be a gas explosion or other trend while fire extinguishing with inert gas. 展开更多
关键词 gas explosion explosive characteristics gas explosive limit
下载PDF
Time-series gas prediction model using LS-SVR within a Bayesian framework 被引量:8
4
作者 Qiao Meiying Ma Xiaoping +1 位作者 Lan ]ianyi Wang Ying 《Mining Science and Technology》 EI CAS 2011年第1期153-157,共5页
The traditional least squares support vector regression(LS-SVR)model,using cross validation to determine the regularization parameter and kernel parameter,is time-consuming.We propose a Bayesian evidence framework t... The traditional least squares support vector regression(LS-SVR)model,using cross validation to determine the regularization parameter and kernel parameter,is time-consuming.We propose a Bayesian evidence framework to infer the LS-SVR model parameters.Three levels Bayesian inferences are used to determine the model parameters,regularization hyper-parameters and tune the nuclear parameters by model comparison.On this basis,we established Bayesian LS-SVR time-series gas forecasting models and provide steps for the algorithm.The gas outburst data of a Hebi 10th mine working face is used to validate the model.The optimal embedding dimension and delay time of the time series were obtained by the smallest differential entropy method.Finally,within a MATLAB7.1 environment,we used actual coal gas data to compare the traditional LS-SVR and the Bayesian LS-SVR with LS-SVMlab1.5 Toolbox simulation.The results show that the Bayesian framework of an LS-SVR significantly improves the speed and accuracy of the forecast. 展开更多
关键词 Bayesian framework LS-SVR Time-series Gas prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部