期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Python的瓦斯浓度ARIMA预测模型构建及其应用 被引量:9
1
作者 张震 朱权洁 +2 位作者 李青松 张尔辉 刘鸿伟 《华北科技学院学报》 2020年第2期23-28,49,共7页
针对矿井瓦斯浓度预测研究现状,提出一种基于Python的瓦斯浓度时间序列预测方法。该方法采集、处理了矿井瓦斯浓度历史数据,形成适用于数据挖掘的平稳时间序列;基于该序列,调用Python自带的ARIMA模块函数,构建瓦斯浓度预测模型;利用建... 针对矿井瓦斯浓度预测研究现状,提出一种基于Python的瓦斯浓度时间序列预测方法。该方法采集、处理了矿井瓦斯浓度历史数据,形成适用于数据挖掘的平稳时间序列;基于该序列,调用Python自带的ARIMA模块函数,构建瓦斯浓度预测模型;利用建立的预测模型对瓦斯浓度进行预测,并对比分析瓦斯浓度历史数据与预测数据的误差大小,进行模型预测效果评价;最后,利用满足精度要求的预测模型,预测瓦斯浓度变化趋势。以贵州某矿为例,采集2018年3月5日至2018年3月7日的瓦斯数据作为样本数据,并调用Python的ARIMA模块建立预测模型,开展瓦斯浓度预测研究。结果表明,该方法实现了瓦斯浓度预测的可视化,并使瓦斯浓度预测均方根误差低为234%,预测精度较高,可为降低矿井瓦斯事故提供一定的技术支撑。 展开更多
关键词 矿井瓦斯浓度预测 时间序列 PYTHON语言 ARIMA
下载PDF
基于时间序列的瓦斯浓度动态预测 被引量:14
2
作者 郭思雯 陶玉帆 李超 《工矿自动化》 北大核心 2018年第9期20-25,共6页
现有瓦斯浓度预测方法只能实现瓦斯浓度的静态预测,不能随着瓦斯数据的累积而及时更新,从而导致预测结果不具有及时性。针对该问题,提出了一种基于时间序列的瓦斯浓度动态预测方法。利用小波分解技术的多分辨率特性,将瓦斯浓度时间序列... 现有瓦斯浓度预测方法只能实现瓦斯浓度的静态预测,不能随着瓦斯数据的累积而及时更新,从而导致预测结果不具有及时性。针对该问题,提出了一种基于时间序列的瓦斯浓度动态预测方法。利用小波分解技术的多分辨率特性,将瓦斯浓度时间序列分解到不同尺度上,使时间序列平稳化;通过实时动态构建的自回归滑动平均(ARMA)模型,利用过去瓦斯浓度变化趋势预测未来一段时间的矿井瓦斯浓度值,得到时间序列预测结果;为提高瓦斯浓度预测精度,将ARMA模型的预测结果与矿井环境参数输入到训练好的BP神经网络模型中,通过BP神经网络模型对预测结果进行修正,从而获得最终的瓦斯浓度预测值。测试结果表明,该方法可对矿井瓦斯浓度进行准确预测,瓦斯体积分数预测平均相对误差从8%降低到了5%。 展开更多
关键词 矿井瓦斯浓度预测 瓦斯浓度动态预测 时间序列 小波分解 自回归滑动平均模型 BP神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部