期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合并行特征传递深度学习网络的矿井行人检测
被引量:
3
1
作者
卫星
张海涛
+1 位作者
陆阳
石雷
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2019年第12期2091-2100,共10页
矿井行人检测是实现机车无人驾驶的关键技术之一,传统视觉特征提取算法无法有效地应对矿井巷道环境复杂、照明恶劣等问题.为此提出了一种基于并行特征传递的矿井行人检测深度学习网络,以保证检测的高准确率与强实时性.首先阐述了网络的...
矿井行人检测是实现机车无人驾驶的关键技术之一,传统视觉特征提取算法无法有效地应对矿井巷道环境复杂、照明恶劣等问题.为此提出了一种基于并行特征传递的矿井行人检测深度学习网络,以保证检测的高准确率与强实时性.首先阐述了网络的结构,包括并行工作的行人辨识模块和行人定位模块,以及两者之间的特征传递块;其中行人辨识模块粗略调整锚点框位置与大小且过滤负锚点,行人定位模块进一步提升回归精度并给出预测结果特征,传递块将行人辨识模块的不同层的特征转换成行人定位模块所需特征.其次采用数据集扩增、数据增强和难例挖掘等措施优化训练过程.最后给出基于安徽桃源与新集矿井采集视频的实验结果.实验数据表明,所提算法以37帧/s的实时处理速率,其平均精度仍可保持63.4%,与YOLOv1算法相比,平均精度提高9.2%,与M2Det算法相比,提高22帧/s.
展开更多
关键词
矿井行人检测
深度学习网络
并行特征传递
无人驾驶
下载PDF
职称材料
题名
结合并行特征传递深度学习网络的矿井行人检测
被引量:
3
1
作者
卫星
张海涛
陆阳
石雷
机构
合肥工业大学计算机与信息学院
安全关键工业测控技术教育部工程研究中心
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2019年第12期2091-2100,共10页
基金
国家重点研发计划专项(2018YFC0604404)
安徽省重点研发计划项目(201904d07020008)
中央高校基本科研业务费专项(JZ2019YYPY0012)
文摘
矿井行人检测是实现机车无人驾驶的关键技术之一,传统视觉特征提取算法无法有效地应对矿井巷道环境复杂、照明恶劣等问题.为此提出了一种基于并行特征传递的矿井行人检测深度学习网络,以保证检测的高准确率与强实时性.首先阐述了网络的结构,包括并行工作的行人辨识模块和行人定位模块,以及两者之间的特征传递块;其中行人辨识模块粗略调整锚点框位置与大小且过滤负锚点,行人定位模块进一步提升回归精度并给出预测结果特征,传递块将行人辨识模块的不同层的特征转换成行人定位模块所需特征.其次采用数据集扩增、数据增强和难例挖掘等措施优化训练过程.最后给出基于安徽桃源与新集矿井采集视频的实验结果.实验数据表明,所提算法以37帧/s的实时处理速率,其平均精度仍可保持63.4%,与YOLOv1算法相比,平均精度提高9.2%,与M2Det算法相比,提高22帧/s.
关键词
矿井行人检测
深度学习网络
并行特征传递
无人驾驶
Keywords
mine pedestrian detection
deep learning network
parallel feature transfer
unmanned drive
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合并行特征传递深度学习网络的矿井行人检测
卫星
张海涛
陆阳
石雷
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2019
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部