矿井视频监控系统的相当一部分图像信息采集传感器处于低照明、高密度粉尘的环境中,导致获取的图像出现忽明忽暗、噪声较多的现象,很大程度上干扰了对井下生产状况的有效监控。为此,将小波阈值去噪算法与非局部均值滤波算法(Non-local m...矿井视频监控系统的相当一部分图像信息采集传感器处于低照明、高密度粉尘的环境中,导致获取的图像出现忽明忽暗、噪声较多的现象,很大程度上干扰了对井下生产状况的有效监控。为此,将小波阈值去噪算法与非局部均值滤波算法(Non-local means filtering,NLM)相结合,提出了一种井下视频图像去噪算法。该算法对获取的原始矿井视频图像进行单层小波变换,对得到的低频系数和高频系数分别进行如下处理:1将低频系数进行单层小波变换,得到次低频系数1和次高频系数1,对次高频系数1采用改进型小波阈值去噪模型进行噪声抑制后与次低频系数1进行重构,得到低频图像;2将高频系数进行单层小波变换,得到次低频系数2和次高频系数2,对次高频系数2予以舍弃,对次低频系数2采用小波软阈值去噪模型处理后进行系数重构,得到高频图像。对获取的低频、高频图像进行融合,并对融合后的图像进行非局部均值滤波,得到高清晰度的矿井视频图像。采用VB语言对所提算法进行编程试验,并与小波硬阈值去噪模型、小波软阈值去噪模型、非局部均值滤波算法进行试验对比,结果表明:该算法去噪后的矿井视频图像清晰度以及峰值信噪比(Peak singnal noise to ratio,PSNR)、均方根误差(Root mean square error,MSE)等指标明显优于其余3类算法。展开更多
由于井下粉尘较多,光照不均匀,易导致矿井视频图像中含有大量噪声,实时获取的矿井视频图像整体较模糊,影响了对其进行分析判读。对此,基于小波变换,提出了一种小波域矿井视频图像滤波算法。该算法首先对矿井视频图像进行2层小波变换,对...由于井下粉尘较多,光照不均匀,易导致矿井视频图像中含有大量噪声,实时获取的矿井视频图像整体较模糊,影响了对其进行分析判读。对此,基于小波变换,提出了一种小波域矿井视频图像滤波算法。该算法首先对矿井视频图像进行2层小波变换,对获得的低频和高频小波分解系数分别进行逆小波变换,得到空间域原始图像的低频图像和高频图像;其次根据低频图像对比度较低、基本不受到噪声干扰的特点,对其采用同态滤波算法进行增强处理;然后,在对非局部均值滤波(Non-local means filtering,NLM)算法特点分析的基础上,分别从相似性权重计算、图像块搜索范围自适应确定等方面对其进行了改进,提出了一种改进型非局部均值滤波算法(Improved non-local means filtering,INLM),采用该算法对高频图像进行去噪处理;最后将增强后的低频图像和去噪后的高频图像进行叠加,得到质量较高的矿井视频图像。采用一幅贵州省兴仁县王家寨煤矿井下视频图像进行试验,并将文中所提算法与非局部均值滤波算法及其2类改进型算法进行性能对比,采用结构相似度指数(Structure similarity,SSIM)、均方根误差(Root mean square error,RMSE)等指标对各算法性能进行评价,结果表明:新算法对于矿井视频图像的处理效果优于其余算法,对于高效处理矿井视频图像有一定的参考价值。展开更多
针对矿井视频监控图像受噪声干扰影响大,采用常规的图像采样和压缩方法存在图像模糊和传输时间过长等问题,提出了一种矿井视频监控图像分块压缩感知方法。该方法通过建立矿井视频监控图像分块压缩感知模型,在井下图像采集节点利用稀疏...针对矿井视频监控图像受噪声干扰影响大,采用常规的图像采样和压缩方法存在图像模糊和传输时间过长等问题,提出了一种矿井视频监控图像分块压缩感知方法。该方法通过建立矿井视频监控图像分块压缩感知模型,在井下图像采集节点利用稀疏随机矩阵进行压缩采样,然后在地面监控中心利用正交匹配追踪(OMP)算法重构图像。研究结果表明,采用本文算法的重构图像误差小、重构时间短,所需信号采样点数少;与扰频Hadamard矩阵相比,采用稀疏随机矩阵和高斯随机矩阵作为观测矩阵对图像信号重构的峰值信噪比(PSNR)提高4 d B^5 d B;本文算法与基于小波基的算法相比,信号重构的PSNR提高1 d B^4 d B,重构时间缩短至少80%以上。展开更多
由于矿井空气粉尘较多且光照不均匀,导致井下视频监控系统获取的图像含有大量噪声且明暗不均,在一定程度上影响了对井下生产状况的实时有效监控。为此,提出了一种改进模糊中值滤波算法。首先设计了一种自适应改进模糊隶属度系数计算方法...由于矿井空气粉尘较多且光照不均匀,导致井下视频监控系统获取的图像含有大量噪声且明暗不均,在一定程度上影响了对井下生产状况的实时有效监控。为此,提出了一种改进模糊中值滤波算法。首先设计了一种自适应改进模糊隶属度系数计算方法,该方法将图像滤波窗口内像素点的灰度最小值、最大值、均值等作为阈值来计算不同像素点灰度值的模糊隶属度系数,克服了经典模糊隶属度系数计算时需设置大量阈值的不足;然后根据模糊隶属度系数进行模糊加权中值滤波,并对滤波后图像的灰度直方图进行了均衡化处理。采用C#语言编写算法运算程序,试验数据为2幅某矿井视频监控图像,试验中引入了模糊中值滤波、加权中值滤波、开关中值滤波等算法进行对比分析,并对各算法的试验结果采用峰值信噪比(Peak signal noise to ratio,PSNR)和算法耗时2个指标进行评价,结果表明:改进模糊中值滤波算法相对于其余3类算法而言不仅去噪效果较优,而且耗时较少,对于批量处理矿井视频监控图像有一定的参考价值。展开更多
文摘矿井视频监控系统的相当一部分图像信息采集传感器处于低照明、高密度粉尘的环境中,导致获取的图像出现忽明忽暗、噪声较多的现象,很大程度上干扰了对井下生产状况的有效监控。为此,将小波阈值去噪算法与非局部均值滤波算法(Non-local means filtering,NLM)相结合,提出了一种井下视频图像去噪算法。该算法对获取的原始矿井视频图像进行单层小波变换,对得到的低频系数和高频系数分别进行如下处理:1将低频系数进行单层小波变换,得到次低频系数1和次高频系数1,对次高频系数1采用改进型小波阈值去噪模型进行噪声抑制后与次低频系数1进行重构,得到低频图像;2将高频系数进行单层小波变换,得到次低频系数2和次高频系数2,对次高频系数2予以舍弃,对次低频系数2采用小波软阈值去噪模型处理后进行系数重构,得到高频图像。对获取的低频、高频图像进行融合,并对融合后的图像进行非局部均值滤波,得到高清晰度的矿井视频图像。采用VB语言对所提算法进行编程试验,并与小波硬阈值去噪模型、小波软阈值去噪模型、非局部均值滤波算法进行试验对比,结果表明:该算法去噪后的矿井视频图像清晰度以及峰值信噪比(Peak singnal noise to ratio,PSNR)、均方根误差(Root mean square error,MSE)等指标明显优于其余3类算法。
文摘由于井下粉尘较多,光照不均匀,易导致矿井视频图像中含有大量噪声,实时获取的矿井视频图像整体较模糊,影响了对其进行分析判读。对此,基于小波变换,提出了一种小波域矿井视频图像滤波算法。该算法首先对矿井视频图像进行2层小波变换,对获得的低频和高频小波分解系数分别进行逆小波变换,得到空间域原始图像的低频图像和高频图像;其次根据低频图像对比度较低、基本不受到噪声干扰的特点,对其采用同态滤波算法进行增强处理;然后,在对非局部均值滤波(Non-local means filtering,NLM)算法特点分析的基础上,分别从相似性权重计算、图像块搜索范围自适应确定等方面对其进行了改进,提出了一种改进型非局部均值滤波算法(Improved non-local means filtering,INLM),采用该算法对高频图像进行去噪处理;最后将增强后的低频图像和去噪后的高频图像进行叠加,得到质量较高的矿井视频图像。采用一幅贵州省兴仁县王家寨煤矿井下视频图像进行试验,并将文中所提算法与非局部均值滤波算法及其2类改进型算法进行性能对比,采用结构相似度指数(Structure similarity,SSIM)、均方根误差(Root mean square error,RMSE)等指标对各算法性能进行评价,结果表明:新算法对于矿井视频图像的处理效果优于其余算法,对于高效处理矿井视频图像有一定的参考价值。
文摘针对矿井视频监控图像受噪声干扰影响大,采用常规的图像采样和压缩方法存在图像模糊和传输时间过长等问题,提出了一种矿井视频监控图像分块压缩感知方法。该方法通过建立矿井视频监控图像分块压缩感知模型,在井下图像采集节点利用稀疏随机矩阵进行压缩采样,然后在地面监控中心利用正交匹配追踪(OMP)算法重构图像。研究结果表明,采用本文算法的重构图像误差小、重构时间短,所需信号采样点数少;与扰频Hadamard矩阵相比,采用稀疏随机矩阵和高斯随机矩阵作为观测矩阵对图像信号重构的峰值信噪比(PSNR)提高4 d B^5 d B;本文算法与基于小波基的算法相比,信号重构的PSNR提高1 d B^4 d B,重构时间缩短至少80%以上。
文摘由于矿井空气粉尘较多且光照不均匀,导致井下视频监控系统获取的图像含有大量噪声且明暗不均,在一定程度上影响了对井下生产状况的实时有效监控。为此,提出了一种改进模糊中值滤波算法。首先设计了一种自适应改进模糊隶属度系数计算方法,该方法将图像滤波窗口内像素点的灰度最小值、最大值、均值等作为阈值来计算不同像素点灰度值的模糊隶属度系数,克服了经典模糊隶属度系数计算时需设置大量阈值的不足;然后根据模糊隶属度系数进行模糊加权中值滤波,并对滤波后图像的灰度直方图进行了均衡化处理。采用C#语言编写算法运算程序,试验数据为2幅某矿井视频监控图像,试验中引入了模糊中值滤波、加权中值滤波、开关中值滤波等算法进行对比分析,并对各算法的试验结果采用峰值信噪比(Peak signal noise to ratio,PSNR)和算法耗时2个指标进行评价,结果表明:改进模糊中值滤波算法相对于其余3类算法而言不仅去噪效果较优,而且耗时较少,对于批量处理矿井视频监控图像有一定的参考价值。