A new short-term warning and integrity monitoring algorithm was proposed for coal mine shaft safety. The Kalman filter (KF) model was used to extract real global positioning system (GPS) kinematic deformation informat...A new short-term warning and integrity monitoring algorithm was proposed for coal mine shaft safety. The Kalman filter (KF) model was used to extract real global positioning system (GPS) kinematic deformation information. The short-term warning model was built by using the two-side cumulative sum (CUSUM) test, which further improves the warning system reliability. Availability (the minimum warning deformation, MWD), false alarm rate (the average run length, ARL), missed rate (the warning delay, WD) and the relationships among them were analyzed and the method choosing warning parameters is given. A test of a deformation simulation platform shows that the warning algorithm can be effectively used for steep deformation warning. A field experiment of the Malan mine shaft in Shanxi coal area illustrates that the proposed algorithm can detect small dynamic changes and the corresponding occurring time. At given warning thresholds (MWD is 15 mm and ARL is 1000),the detected deformations of two consecutive days’ deformation sequences with the algorithm occur at the 705th epoch (705 s) and the 517th epoch (517 s), respectively.展开更多
To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consist...To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consisting of main ventilation fan, safety-partition linked passageways, and air-required locations. We then applied chaos theory to identify the air quantity and gas concentration of underground partition boundaries, and adopted a fixed data quantity, multi-step progressive, weighted first-order local-domain method to setup a chaos prediction model and a CVS safety forecasting and forewarning system formed by the normal change level, orange forewarning level, and red alarm level. We next conduct the on-field application of the system in a coalmine in Jining, Shandong, China. The results showed that (1) in the statistical scale of 5 min, the changes in both air quantity and gas concentration along CVS partition airflow boundaries were characteristic of chaos and could be used for short-term chaos prediction, and the latter was more chaotic than the former;(2) the setup chaos prediction model had a higher prediction precision and the established safety prediction system could not only predict the variation in CVS stability but also reflect the rationality of underground mining intensity. Thus, this CVS safety forecasting and forewarning system is of better application value.展开更多
基金Projects(2013RC16,2012LWB28)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(NCET-13-1019)supported by the Program for New Century Excellent Talents in University,China
文摘A new short-term warning and integrity monitoring algorithm was proposed for coal mine shaft safety. The Kalman filter (KF) model was used to extract real global positioning system (GPS) kinematic deformation information. The short-term warning model was built by using the two-side cumulative sum (CUSUM) test, which further improves the warning system reliability. Availability (the minimum warning deformation, MWD), false alarm rate (the average run length, ARL), missed rate (the warning delay, WD) and the relationships among them were analyzed and the method choosing warning parameters is given. A test of a deformation simulation platform shows that the warning algorithm can be effectively used for steep deformation warning. A field experiment of the Malan mine shaft in Shanxi coal area illustrates that the proposed algorithm can detect small dynamic changes and the corresponding occurring time. At given warning thresholds (MWD is 15 mm and ARL is 1000),the detected deformations of two consecutive days’ deformation sequences with the algorithm occur at the 705th epoch (705 s) and the 517th epoch (517 s), respectively.
基金supported by the National Natural Science Foundation of China(Nos.51304128 and 51674158)the Natural Science Foundation of Shandong Province(No.ZR2013EEQ015)
文摘To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consisting of main ventilation fan, safety-partition linked passageways, and air-required locations. We then applied chaos theory to identify the air quantity and gas concentration of underground partition boundaries, and adopted a fixed data quantity, multi-step progressive, weighted first-order local-domain method to setup a chaos prediction model and a CVS safety forecasting and forewarning system formed by the normal change level, orange forewarning level, and red alarm level. We next conduct the on-field application of the system in a coalmine in Jining, Shandong, China. The results showed that (1) in the statistical scale of 5 min, the changes in both air quantity and gas concentration along CVS partition airflow boundaries were characteristic of chaos and could be used for short-term chaos prediction, and the latter was more chaotic than the former;(2) the setup chaos prediction model had a higher prediction precision and the established safety prediction system could not only predict the variation in CVS stability but also reflect the rationality of underground mining intensity. Thus, this CVS safety forecasting and forewarning system is of better application value.