The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means o...The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means of prevention of gas outbursts, and some suggestions were put forward. The characteristic of different gas emissions and the corresponding counter measures were presented, and & case study of simultaneous extraction of coal and gas in Xieyi Coal Mine was carried out by coal mining and gas extraction without coal-pillar. The field application shows that gas drainage ratio in panel 5121(0) averages about 90% and reaches as high as 95~/0, which will give beneficial references to gas control in coal mines.展开更多
The threshold control of safety blasting vibration velocity is a significant process for the underground mining of complicated ore deposit under construction,road,and water.According to the equivalent principle of dis...The threshold control of safety blasting vibration velocity is a significant process for the underground mining of complicated ore deposit under construction,road,and water.According to the equivalent principle of displacement and velocity of mass point,differential evolution is put forward based on 3DEC dynamic analysis,making the calculation more efficient and accurate.The 3DEC model of the complicated orebody under railway is established according to the topographic maps and geological data of the eastern Pyrite Mine.The stimulus-response distribution of internal stress and displacement fields are demonstrated by analyzing the on-site monitoring vibration displacement and velocity data of the mass point.The reliability of parameter selection,such as blasting simulation waveforms,rock damping,is identified.The safety vibration velocity of railway is set to 4.5 cm/s in line with the requirement of safety blasting rules.Thus,the maximum amount of single-stage explosive in this region is 44.978 kg.The simulation result is in good agreement with the on-site monitoring datum.No displacement and settlement of the 701 railway special line was achieved by choosing the critical amount of the single-stage explosive.展开更多
Dense membrane with the composition of SrFe0.6Cu0.3Ti0.1O3-δ (SFCTO) was prepared by solid state reaction method. Oxygen permeation flux through this membrane was investigated at operating temperature ranging from ...Dense membrane with the composition of SrFe0.6Cu0.3Ti0.1O3-δ (SFCTO) was prepared by solid state reaction method. Oxygen permeation flux through this membrane was investigated at operating temperature ranging from 750℃ to 950℃ and different oxygen partial pressure. XRD measurements indicated that the compound was able to form single-phased perovskite structure in which part of Fe was replaced by Cu and Ti. The oxygen desorption and the reducibility of SFCTO powder were characterized by thermogravimetric analysis and temperature programmed reduction analysis, respectively. It was found that SFCTO had good structure stability under low oxygen pressure at high temperature. The addition of Ti increased the reduction temperature of Cu and Fe. Performance tests showed that the oxygen permeation flux through a 1.5 mm thick SFCTO membrane was 0.35-0.96 ml·min ^-1·cm^-2 under air/helium oxygen partial pressure gradient with activation energy of 53.2 kJ·mol^-1. The methane conversion of 85%, CO selectivity of 90% and comparatively higher oxygen permeation flux of 5 ml·min^-1·cm^- 2 were achieved at 850℃, when a SFCTO membrane reactor loaded with Ni-Ce/Al2O3 catalyst was applied for the partial oxidation of methane to syngas.展开更多
Through analysis of geological characteristics of the gold deposit,the shape,occurrence,and spatial distribution of ore-controlling fault plane in the Shanhou mining area were investigated,and the regularities of enri...Through analysis of geological characteristics of the gold deposit,the shape,occurrence,and spatial distribution of ore-controlling fault plane in the Shanhou mining area were investigated,and the regularities of enrichment and emplacement of ore body were summarized. The analysis shows that the Shanhou gold deposit was controlled by NE-NNE Zhaoping fault zone; the fault gouge developed in fault zone provides a barrier to ore-bearing hydrothermal solution,and the industrial ore body is all distributed within 40 m of footwall of main fault plane. The industrial ore body is mainly enriched in the NE positions of fault where the deep dips changed to flat dips,and shows the obvious regularity of NE lateral trending with angle around 75°. The stress analysis of fault in mineralization epoch showed that the ore-controlling structure presented the characteristics of righthanded rotation inverse-fault activity in mineralization epoch,and the host space tended to occur in NE regional tension positions where the dips become flat in the strike of fault,causing emplacement of ore body. It is thought by combining equal interval distribution of deposit with spatial variation of industrial ore body and orecontrolling fault structure that the Shanhou gold deposit recurred in regularity and the non-ore interval occurred in the ore body. Meanwhile,it is predicted that the favorable target area of prospecting lies in the areas of deep main fault plane with NE strike( > 30°) and the deep dips changing to flat dips in the Shanhou mining area,and the prospecting should be emphasized. The favorable deep mineralization prospect exists in middle Beibo mining area,where is the key area for future prospecting.展开更多
One of the major safety issues in coal mining is heatings and the resultant spontaneous combustion in underground coal mines. CSIRO researchers have developed a number of polymer gels suitable for controlling beatings...One of the major safety issues in coal mining is heatings and the resultant spontaneous combustion in underground coal mines. CSIRO researchers have developed a number of polymer gels suitable for controlling beatings in coal mines. These gels were developed to meet strict selection criteria including easy preparation, no or low toxicity, controllable gelation time, adaptable to mine water chemistry, adjustable viscosity, relatively long gel life, thermally and chemically stable and low cost. The HPAM-Aluminum Citrate gel system was identified to be the most favourable gel system for fire suppression in under- ground coal mines. These gels can be applied to the areas undergoing coal heating or gas leakage at a controllable gelation time and impermeable gel barriers can be formed in the areas to block ingress of air.展开更多
The new type of risk management is process management. First, the hazardsources are identified before coal mine accidents occur, and then the pre-control measureand information monitoring method based on classifying t...The new type of risk management is process management. First, the hazardsources are identified before coal mine accidents occur, and then the pre-control measureand information monitoring method based on classifying the hidden hazard sources aregiven. Lastly, the risk pre-alarm and risk control method are confirmed, the managementstandard and management measure are used to eliminate the hidden hazard sources. Inthis study, an evaluation system is built to evaluate the result of risk management.展开更多
Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method, The oxygen carriers were characterized by thermal analysis, H2-temperature-...Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method, The oxygen carriers were characterized by thermal analysis, H2-temperature-programmed reduction and X-ray diffraction methods. Performance tests were evaluated through Chemical-Looping Hydrogen Genera- tion in a fixed-bed reactor operating at atmospheric pressure. The characterization results showed that all samples were composed of metal oxides and perovskite oxides. Performance results indicated that CH4 conversion over the oxygen car- riers decreased in the lbllowing order: NiO/LaNiO3〉Co203/LaCoO3〉Fe203/LaFeO3. The ability of NiO/LaNiO3 and F%O3/ LaFeO3 to decompose water was stronger than that of Co203/LaCoO3 as evidenced by our experiments. H2 amounting to 80 mL upon reacting on methane in every cycle could be completely oxidized by NiO/LaNiO3 at 900℃ in the period from the third cycle to the eighth cycle.展开更多
By the combination of high-temperature organometallic synthesis and phase transfer through complete ligand-exchange withmixed phosphate, highly water-dispersible Fe3O4nanoparticles with narrow size distribution are ob...By the combination of high-temperature organometallic synthesis and phase transfer through complete ligand-exchange withmixed phosphate, highly water-dispersible Fe3O4nanoparticles with narrow size distribution are obtained, which show appli-cable response to magnetic field. IR and -potential characterization of this system provides insights into ligand structures onparticle surface.展开更多
A heightened understanding of nucleation and growth mechanisms is paramount if effective solution processing of organic-inorganic perovskite thin-films for optoelectronic applications is to be achieved. Many fabri- ca...A heightened understanding of nucleation and growth mechanisms is paramount if effective solution processing of organic-inorganic perovskite thin-films for optoelectronic applications is to be achieved. Many fabri- cation techniques have been utilized previously to develop high-performance perovskite layers but there remains an absence of a unifying model that describes accurately the formation of these materials from solution. The present study provides a thorough analysis of nucleation and growth kinetics underpinning the development of hybrid organic-in- organic perovskite thin-films. Through precise control of the perovskite growth conditions the spacing of heteroge- neous nucleation sites was varied successfully from several hundred nanometers to several hundred microns. The crystalline regions surrounding these nuclei were found to comprise clusters of highly-oriented crystal domains exceed- ing 100 pm in diameter. However, no beneficial correlation was found between the size of these well-oriented grain-clus- ters and the optoelectronic performance. The formation of the perovskite microstructure features characteristics of both classical and non-classical growth mechanisms. The insights into perovskite thin-film growth developed by the present study provide clear implications for the development of future hybrid perovskite microstructures.展开更多
Noble and active gases are released from geological samples during gas extraction for noble gas isotope analyses. The active gases should be removed before inletting to mass spectrometers for the analyses. The normal ...Noble and active gases are released from geological samples during gas extraction for noble gas isotope analyses. The active gases should be removed before inletting to mass spectrometers for the analyses. The normal noble gas preparation systems can clean up most geological samples. However, authigenic minerals from sedimentary rocks in oil/gas fields contain organic matter, which cannot be cleaned up by the normal preparation systems and thus influence the noble gas analyses. We introduce a novel gas purification system (PRC patent No. ZL201320117751.2), which includes several reversible purification pumps with different absorbing and degassing temperatures. It can well clean up water steam, carbon dioxide and organic gas- es. Mica minerals are often used for 40Ar/39Ar dating. A muscovite sample (2082MS) which could not be cleaned up by the normal preparation system with two SAES NP10 getters, becomes the test sample for a comparative experiment in this study. The experiment is assigned into 4 sections with the organic gas removal system (OGRS) "Closed/Opened" in turn. When the OGRS is closed only with two NP10 getters for purification, the 40At intensities increase in curves with inlet time because of impurities, the 40Ar/39Ar dating results yield age errors about +2%-±1% (20-). When the OGRS is opened for purification, in contrast, the 40Ar intensities decrease linearly with inlet time. This indicates that the gases have been cleaned up effectively, and the 40Ar/39Ar results yield ages with errors in ±0.4%. The OGRS is very helpful to obtain high-quality analysis data.展开更多
Since the year of 2009 when the first appli- cation of organohalide lead perovskite as the light har- vester in solar cells was reported, tremendous attention has been devoted to these new types of perovskite-based so...Since the year of 2009 when the first appli- cation of organohalide lead perovskite as the light har- vester in solar cells was reported, tremendous attention has been devoted to these new types of perovskite-based solid-state solar cells and remarkable power conversion efficiency of over 20 % has been achieved to date. In this review, we first introduce the properties of organic- inorganic halide perovskites and then focus on the notable achievements made on the perovskite layer to improve the power conversion efficiency of solid-state perovskite solar cells, which is featured by process engineering of the state-of-the-art lead methylammoni- um triiodide perovskite and material control of lead triiodide perovskites and other newly emerged per- ovskites. In the end, we wish to provide an outlook of the future development in solid-state perovskite solar cells. Provided that the instability and toxicity of solid- state perovskite solar cells can be solved, we will wit- ness a new era for cost-effective and efficient solar cells.展开更多
文摘The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means of prevention of gas outbursts, and some suggestions were put forward. The characteristic of different gas emissions and the corresponding counter measures were presented, and & case study of simultaneous extraction of coal and gas in Xieyi Coal Mine was carried out by coal mining and gas extraction without coal-pillar. The field application shows that gas drainage ratio in panel 5121(0) averages about 90% and reaches as high as 95~/0, which will give beneficial references to gas control in coal mines.
基金Fund for New Teacher of the Doctoral Program of Higher Education(No. 200805611092)the Fundamental Research Funds for the Central Universities(No.2009zm0064)the Key Program of the National Natural Science Foundation of China(No.50934002) for its financial support
文摘The threshold control of safety blasting vibration velocity is a significant process for the underground mining of complicated ore deposit under construction,road,and water.According to the equivalent principle of displacement and velocity of mass point,differential evolution is put forward based on 3DEC dynamic analysis,making the calculation more efficient and accurate.The 3DEC model of the complicated orebody under railway is established according to the topographic maps and geological data of the eastern Pyrite Mine.The stimulus-response distribution of internal stress and displacement fields are demonstrated by analyzing the on-site monitoring vibration displacement and velocity data of the mass point.The reliability of parameter selection,such as blasting simulation waveforms,rock damping,is identified.The safety vibration velocity of railway is set to 4.5 cm/s in line with the requirement of safety blasting rules.Thus,the maximum amount of single-stage explosive in this region is 44.978 kg.The simulation result is in good agreement with the on-site monitoring datum.No displacement and settlement of the 701 railway special line was achieved by choosing the critical amount of the single-stage explosive.
基金Supported by the Natural Science Foundation of Guangdong Province (030514) and the Science and Technology Program of Guangdong Province (2004B33401006).
文摘Dense membrane with the composition of SrFe0.6Cu0.3Ti0.1O3-δ (SFCTO) was prepared by solid state reaction method. Oxygen permeation flux through this membrane was investigated at operating temperature ranging from 750℃ to 950℃ and different oxygen partial pressure. XRD measurements indicated that the compound was able to form single-phased perovskite structure in which part of Fe was replaced by Cu and Ti. The oxygen desorption and the reducibility of SFCTO powder were characterized by thermogravimetric analysis and temperature programmed reduction analysis, respectively. It was found that SFCTO had good structure stability under low oxygen pressure at high temperature. The addition of Ti increased the reduction temperature of Cu and Fe. Performance tests showed that the oxygen permeation flux through a 1.5 mm thick SFCTO membrane was 0.35-0.96 ml·min ^-1·cm^-2 under air/helium oxygen partial pressure gradient with activation energy of 53.2 kJ·mol^-1. The methane conversion of 85%, CO selectivity of 90% and comparatively higher oxygen permeation flux of 5 ml·min^-1·cm^- 2 were achieved at 850℃, when a SFCTO membrane reactor loaded with Ni-Ce/Al2O3 catalyst was applied for the partial oxidation of methane to syngas.
基金Project of Shanhou Gold Deposit of Laixi of Shandong Province(SDLX2012-3-28)
文摘Through analysis of geological characteristics of the gold deposit,the shape,occurrence,and spatial distribution of ore-controlling fault plane in the Shanhou mining area were investigated,and the regularities of enrichment and emplacement of ore body were summarized. The analysis shows that the Shanhou gold deposit was controlled by NE-NNE Zhaoping fault zone; the fault gouge developed in fault zone provides a barrier to ore-bearing hydrothermal solution,and the industrial ore body is all distributed within 40 m of footwall of main fault plane. The industrial ore body is mainly enriched in the NE positions of fault where the deep dips changed to flat dips,and shows the obvious regularity of NE lateral trending with angle around 75°. The stress analysis of fault in mineralization epoch showed that the ore-controlling structure presented the characteristics of righthanded rotation inverse-fault activity in mineralization epoch,and the host space tended to occur in NE regional tension positions where the dips become flat in the strike of fault,causing emplacement of ore body. It is thought by combining equal interval distribution of deposit with spatial variation of industrial ore body and orecontrolling fault structure that the Shanhou gold deposit recurred in regularity and the non-ore interval occurred in the ore body. Meanwhile,it is predicted that the favorable target area of prospecting lies in the areas of deep main fault plane with NE strike( > 30°) and the deep dips changing to flat dips in the Shanhou mining area,and the prospecting should be emphasized. The favorable deep mineralization prospect exists in middle Beibo mining area,where is the key area for future prospecting.
文摘One of the major safety issues in coal mining is heatings and the resultant spontaneous combustion in underground coal mines. CSIRO researchers have developed a number of polymer gels suitable for controlling beatings in coal mines. These gels were developed to meet strict selection criteria including easy preparation, no or low toxicity, controllable gelation time, adaptable to mine water chemistry, adjustable viscosity, relatively long gel life, thermally and chemically stable and low cost. The HPAM-Aluminum Citrate gel system was identified to be the most favourable gel system for fire suppression in under- ground coal mines. These gels can be applied to the areas undergoing coal heating or gas leakage at a controllable gelation time and impermeable gel barriers can be formed in the areas to block ingress of air.
基金Supported by the National Natural Science Foundation of China(70533050)the Eleventh Five-year Science & Technology Support Plan of China(2006BAK03B0703)the Ministry of Education Humanities and Social Science (08JA630083)
文摘The new type of risk management is process management. First, the hazardsources are identified before coal mine accidents occur, and then the pre-control measureand information monitoring method based on classifying the hidden hazard sources aregiven. Lastly, the risk pre-alarm and risk control method are confirmed, the managementstandard and management measure are used to eliminate the hidden hazard sources. Inthis study, an evaluation system is built to evaluate the result of risk management.
基金supported by China Petrochemical Corporation(SINOPEC)(Contact No.106002000284)
文摘Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method, The oxygen carriers were characterized by thermal analysis, H2-temperature-programmed reduction and X-ray diffraction methods. Performance tests were evaluated through Chemical-Looping Hydrogen Genera- tion in a fixed-bed reactor operating at atmospheric pressure. The characterization results showed that all samples were composed of metal oxides and perovskite oxides. Performance results indicated that CH4 conversion over the oxygen car- riers decreased in the lbllowing order: NiO/LaNiO3〉Co203/LaCoO3〉Fe203/LaFeO3. The ability of NiO/LaNiO3 and F%O3/ LaFeO3 to decompose water was stronger than that of Co203/LaCoO3 as evidenced by our experiments. H2 amounting to 80 mL upon reacting on methane in every cycle could be completely oxidized by NiO/LaNiO3 at 900℃ in the period from the third cycle to the eighth cycle.
基金supported by the National Natural Science Foundation of China (Grant No. 20673031)the National Basic Research Program of China (Grant No. 2011CB932803)
文摘By the combination of high-temperature organometallic synthesis and phase transfer through complete ligand-exchange withmixed phosphate, highly water-dispersible Fe3O4nanoparticles with narrow size distribution are obtained, which show appli-cable response to magnetic field. IR and -potential characterization of this system provides insights into ligand structures onparticle surface.
基金the financial support from the Australian Renewable Energy Agency (ARENA)the Australian Centre for Advanced Photovoltaics (ACAP)the ARC Centre of Excellence in Exciton Science
文摘A heightened understanding of nucleation and growth mechanisms is paramount if effective solution processing of organic-inorganic perovskite thin-films for optoelectronic applications is to be achieved. Many fabri- cation techniques have been utilized previously to develop high-performance perovskite layers but there remains an absence of a unifying model that describes accurately the formation of these materials from solution. The present study provides a thorough analysis of nucleation and growth kinetics underpinning the development of hybrid organic-in- organic perovskite thin-films. Through precise control of the perovskite growth conditions the spacing of heteroge- neous nucleation sites was varied successfully from several hundred nanometers to several hundred microns. The crystalline regions surrounding these nuclei were found to comprise clusters of highly-oriented crystal domains exceed- ing 100 pm in diameter. However, no beneficial correlation was found between the size of these well-oriented grain-clus- ters and the optoelectronic performance. The formation of the perovskite microstructure features characteristics of both classical and non-classical growth mechanisms. The insights into perovskite thin-film growth developed by the present study provide clear implications for the development of future hybrid perovskite microstructures.
基金the National Science and Technology Major Project of China(Grant No.2011ZX05025-003-007)the 135 program of Chinese Academy of Sciences(Grant No.GIGCAS-135Y234151001)
文摘Noble and active gases are released from geological samples during gas extraction for noble gas isotope analyses. The active gases should be removed before inletting to mass spectrometers for the analyses. The normal noble gas preparation systems can clean up most geological samples. However, authigenic minerals from sedimentary rocks in oil/gas fields contain organic matter, which cannot be cleaned up by the normal preparation systems and thus influence the noble gas analyses. We introduce a novel gas purification system (PRC patent No. ZL201320117751.2), which includes several reversible purification pumps with different absorbing and degassing temperatures. It can well clean up water steam, carbon dioxide and organic gas- es. Mica minerals are often used for 40Ar/39Ar dating. A muscovite sample (2082MS) which could not be cleaned up by the normal preparation system with two SAES NP10 getters, becomes the test sample for a comparative experiment in this study. The experiment is assigned into 4 sections with the organic gas removal system (OGRS) "Closed/Opened" in turn. When the OGRS is closed only with two NP10 getters for purification, the 40At intensities increase in curves with inlet time because of impurities, the 40Ar/39Ar dating results yield age errors about +2%-±1% (20-). When the OGRS is opened for purification, in contrast, the 40Ar intensities decrease linearly with inlet time. This indicates that the gases have been cleaned up effectively, and the 40Ar/39Ar results yield ages with errors in ±0.4%. The OGRS is very helpful to obtain high-quality analysis data.
基金supported by the Australian Research Council (ARC) through Discovery Project programs
文摘Since the year of 2009 when the first appli- cation of organohalide lead perovskite as the light har- vester in solar cells was reported, tremendous attention has been devoted to these new types of perovskite-based solid-state solar cells and remarkable power conversion efficiency of over 20 % has been achieved to date. In this review, we first introduce the properties of organic- inorganic halide perovskites and then focus on the notable achievements made on the perovskite layer to improve the power conversion efficiency of solid-state perovskite solar cells, which is featured by process engineering of the state-of-the-art lead methylammoni- um triiodide perovskite and material control of lead triiodide perovskites and other newly emerged per- ovskites. In the end, we wish to provide an outlook of the future development in solid-state perovskite solar cells. Provided that the instability and toxicity of solid- state perovskite solar cells can be solved, we will wit- ness a new era for cost-effective and efficient solar cells.