The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means o...The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means of prevention of gas outbursts, and some suggestions were put forward. The characteristic of different gas emissions and the corresponding counter measures were presented, and & case study of simultaneous extraction of coal and gas in Xieyi Coal Mine was carried out by coal mining and gas extraction without coal-pillar. The field application shows that gas drainage ratio in panel 5121(0) averages about 90% and reaches as high as 95~/0, which will give beneficial references to gas control in coal mines.展开更多
The threshold control of safety blasting vibration velocity is a significant process for the underground mining of complicated ore deposit under construction,road,and water.According to the equivalent principle of dis...The threshold control of safety blasting vibration velocity is a significant process for the underground mining of complicated ore deposit under construction,road,and water.According to the equivalent principle of displacement and velocity of mass point,differential evolution is put forward based on 3DEC dynamic analysis,making the calculation more efficient and accurate.The 3DEC model of the complicated orebody under railway is established according to the topographic maps and geological data of the eastern Pyrite Mine.The stimulus-response distribution of internal stress and displacement fields are demonstrated by analyzing the on-site monitoring vibration displacement and velocity data of the mass point.The reliability of parameter selection,such as blasting simulation waveforms,rock damping,is identified.The safety vibration velocity of railway is set to 4.5 cm/s in line with the requirement of safety blasting rules.Thus,the maximum amount of single-stage explosive in this region is 44.978 kg.The simulation result is in good agreement with the on-site monitoring datum.No displacement and settlement of the 701 railway special line was achieved by choosing the critical amount of the single-stage explosive.展开更多
The new type of risk management is process management. First, the hazardsources are identified before coal mine accidents occur, and then the pre-control measureand information monitoring method based on classifying t...The new type of risk management is process management. First, the hazardsources are identified before coal mine accidents occur, and then the pre-control measureand information monitoring method based on classifying the hidden hazard sources aregiven. Lastly, the risk pre-alarm and risk control method are confirmed, the managementstandard and management measure are used to eliminate the hidden hazard sources. Inthis study, an evaluation system is built to evaluate the result of risk management.展开更多
Monodispersed magnetite Fe3O4 and hematite α-Fe2O3 nanocrystals have been grown in co-solvents of alcohol and water. Either the shape or the size of the nanocrystals could be easily controlled. Both the phases and na...Monodispersed magnetite Fe3O4 and hematite α-Fe2O3 nanocrystals have been grown in co-solvents of alcohol and water. Either the shape or the size of the nanocrystals could be easily controlled. Both the phases and nanostructures have been characterized by powder X-ray diffraction patterns and electron microscopy. The magnetic and catalytic properties of these products were investigated and compared with each other. The obtained results clearly demonstrate that these iron oxide nanocrystals are soft ferromagnetic at room temperature and α-Fe2O3 has a more effective catalytic property on the thermal decomposition of ammonium perchlorate than Fe3O4. Based on the experimental data, it is proposed that the magnetic and catalytic properties of these nanocrystals are dependent not only on the size and shape, but also on the surface structure of the nanocrystals. The nanoplates with significant anisotropic nanostructure demonstrate a highly enhanced performance as compared to nanoparticles.展开更多
Since the year of 2009 when the first appli- cation of organohalide lead perovskite as the light har- vester in solar cells was reported, tremendous attention has been devoted to these new types of perovskite-based so...Since the year of 2009 when the first appli- cation of organohalide lead perovskite as the light har- vester in solar cells was reported, tremendous attention has been devoted to these new types of perovskite-based solid-state solar cells and remarkable power conversion efficiency of over 20 % has been achieved to date. In this review, we first introduce the properties of organic- inorganic halide perovskites and then focus on the notable achievements made on the perovskite layer to improve the power conversion efficiency of solid-state perovskite solar cells, which is featured by process engineering of the state-of-the-art lead methylammoni- um triiodide perovskite and material control of lead triiodide perovskites and other newly emerged per- ovskites. In the end, we wish to provide an outlook of the future development in solid-state perovskite solar cells. Provided that the instability and toxicity of solid- state perovskite solar cells can be solved, we will wit- ness a new era for cost-effective and efficient solar cells.展开更多
文摘The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means of prevention of gas outbursts, and some suggestions were put forward. The characteristic of different gas emissions and the corresponding counter measures were presented, and & case study of simultaneous extraction of coal and gas in Xieyi Coal Mine was carried out by coal mining and gas extraction without coal-pillar. The field application shows that gas drainage ratio in panel 5121(0) averages about 90% and reaches as high as 95~/0, which will give beneficial references to gas control in coal mines.
基金Fund for New Teacher of the Doctoral Program of Higher Education(No. 200805611092)the Fundamental Research Funds for the Central Universities(No.2009zm0064)the Key Program of the National Natural Science Foundation of China(No.50934002) for its financial support
文摘The threshold control of safety blasting vibration velocity is a significant process for the underground mining of complicated ore deposit under construction,road,and water.According to the equivalent principle of displacement and velocity of mass point,differential evolution is put forward based on 3DEC dynamic analysis,making the calculation more efficient and accurate.The 3DEC model of the complicated orebody under railway is established according to the topographic maps and geological data of the eastern Pyrite Mine.The stimulus-response distribution of internal stress and displacement fields are demonstrated by analyzing the on-site monitoring vibration displacement and velocity data of the mass point.The reliability of parameter selection,such as blasting simulation waveforms,rock damping,is identified.The safety vibration velocity of railway is set to 4.5 cm/s in line with the requirement of safety blasting rules.Thus,the maximum amount of single-stage explosive in this region is 44.978 kg.The simulation result is in good agreement with the on-site monitoring datum.No displacement and settlement of the 701 railway special line was achieved by choosing the critical amount of the single-stage explosive.
基金Supported by the National Natural Science Foundation of China(70533050)the Eleventh Five-year Science & Technology Support Plan of China(2006BAK03B0703)the Ministry of Education Humanities and Social Science (08JA630083)
文摘The new type of risk management is process management. First, the hazardsources are identified before coal mine accidents occur, and then the pre-control measureand information monitoring method based on classifying the hidden hazard sources aregiven. Lastly, the risk pre-alarm and risk control method are confirmed, the managementstandard and management measure are used to eliminate the hidden hazard sources. Inthis study, an evaluation system is built to evaluate the result of risk management.
基金supported by the National Natural Science Foundation of China, Guangdong Province, Guangzhou Citythe Ph.D. Programs Foundation of Ministry of Education of China (U0734002, 50872158, 8251027501000010, 2010GN-C011 & 20090171110025)
文摘Monodispersed magnetite Fe3O4 and hematite α-Fe2O3 nanocrystals have been grown in co-solvents of alcohol and water. Either the shape or the size of the nanocrystals could be easily controlled. Both the phases and nanostructures have been characterized by powder X-ray diffraction patterns and electron microscopy. The magnetic and catalytic properties of these products were investigated and compared with each other. The obtained results clearly demonstrate that these iron oxide nanocrystals are soft ferromagnetic at room temperature and α-Fe2O3 has a more effective catalytic property on the thermal decomposition of ammonium perchlorate than Fe3O4. Based on the experimental data, it is proposed that the magnetic and catalytic properties of these nanocrystals are dependent not only on the size and shape, but also on the surface structure of the nanocrystals. The nanoplates with significant anisotropic nanostructure demonstrate a highly enhanced performance as compared to nanoparticles.
基金supported by the Australian Research Council (ARC) through Discovery Project programs
文摘Since the year of 2009 when the first appli- cation of organohalide lead perovskite as the light har- vester in solar cells was reported, tremendous attention has been devoted to these new types of perovskite-based solid-state solar cells and remarkable power conversion efficiency of over 20 % has been achieved to date. In this review, we first introduce the properties of organic- inorganic halide perovskites and then focus on the notable achievements made on the perovskite layer to improve the power conversion efficiency of solid-state perovskite solar cells, which is featured by process engineering of the state-of-the-art lead methylammoni- um triiodide perovskite and material control of lead triiodide perovskites and other newly emerged per- ovskites. In the end, we wish to provide an outlook of the future development in solid-state perovskite solar cells. Provided that the instability and toxicity of solid- state perovskite solar cells can be solved, we will wit- ness a new era for cost-effective and efficient solar cells.