This study focuses on China's coastal area and its marine economic development. Applying the information diffusion method, the study establishes a kernel density function and its decomposition using a marine econo...This study focuses on China's coastal area and its marine economic development. Applying the information diffusion method, the study establishes a kernel density function and its decomposition using a marine economic per capita as the index of the model to depict the dynamic evolution law and the internal influential factors of the Chinese marine economy during 1996–2013. The relative development rate was introduced to analyze the spatial differences in the marine economy's development. In this way, space and time dimensions fully characterized the evolution of the Chinese marine economy. Additionally, the influence of growth and inequality in the process of its development can be analyzed. The study shows that the Chinese marine economy as a whole has been growing, and regional marine economic development is relatively coordinated. In addition, the marine economy began to develop even more rapidly after 2004. There are three factors affecting the dynamic evolution of China's marine economy: first, the most influential mean effect, followed by, second, the variance effect, and third, the least influential residual effect. The biggest influence on the dynamic evolution of the marine economy is the improvement of the development level of the marine economy in the coastal area. Meanwhile, due to the existence of inequality, provinces at higher development levels are more dispersed. Furthermore, the existence of the residual effect weakens the influence of the mean effect, and the influence on the dynamic evolution of the marine economy continuously increases. In the analysis of the influencing factors of the evolution and spatial difference of marine economic development, the level of opening to the outside world, the level of investment in fixed assets and the industrial structure have a positive role in promoting economic development. However, capital investment in scientific human research has a negative correlation with economic development, and does not pass the significant test. The difference in regional development levels and development speed is also very apparent; namely, the provinces with higher development levels generally displayed faster development speeds while those with lower development levels showed slower development speeds across the four periods analyzed.展开更多
In this work, esterification of acetic acid and methanol to synthesize methyl acetate in a batch stirred reactor is studied in the temperature range of 305.15–333.15 K. Sulfuric acid is used as the homogeneous cataly...In this work, esterification of acetic acid and methanol to synthesize methyl acetate in a batch stirred reactor is studied in the temperature range of 305.15–333.15 K. Sulfuric acid is used as the homogeneous catalyst with concentrations ranging from 0.0633 mol·L-1to 0.3268 mol·L-1. The feed molar ratio of acetic acid to methanol is varied from 1:1 to 1:4. The influences of temperature, catalyst concentration and reactant concentration on the reaction rate are investigated. A second order kinetic rate equation is used to correlate the experimental data. The forward and backward reaction rate constants and activation energies are determined from the Arrhenius plot.The developed kinetic model is compared with the models in literature. The developed kinetic equation is useful for the simulation of reactive distillation column for the synthesis of methyl acetate.展开更多
The effects of magnetic field intensity, roasting temperature and roasting time on digestion rate and settling performance of bauxite with different iron contents were investigated systematically. The results indicate...The effects of magnetic field intensity, roasting temperature and roasting time on digestion rate and settling performance of bauxite with different iron contents were investigated systematically. The results indicate that such magnetic treatment can profoundly change the microstructure and digestion performance of bauxite. For the two samples carrying different iron contents, phase transformation of the aluminum oxide phase proceeds faster in the high iron bauxite than the low one. The optimal pretreatment conditions of low iron bauxite are roasting temperature 550 ℃ and magnetic field intensity 6 T, while for high iron bauxite are 500 ℃ and 9 T. The digestion rate of alumina can reach 95% and 92% at digestion temperature of 190 ℃ and 250 ℃. The settling performances of roasted ore by intense magnetic field after digestion are enhanced through pretreatment.展开更多
In this study, we have modeled the density (p) and bulk sound velocity (V.) profiles of the bottom lower mantle using the experimental thermal equation of state (EoS) parameters of lower-mantle minerals, includi...In this study, we have modeled the density (p) and bulk sound velocity (V.) profiles of the bottom lower mantle using the experimental thermal equation of state (EoS) parameters of lower-mantle minerals, including bridgmanite, ferropericlase, CaSiO3-perovskite, and post-perovskite. We re-evaluated the literature pressure-volume-temperature relationships of these minerals using a self-consistent pressure scale in order to avoid the long-standing pressure scale problem and to provide more reliable constraints on the thermal EoS parameters. With the obtained thermal EoS parameters, we have constructed the p and V. profiles of the bottom lower mantle in different composition, mineralogy, and temperature models. Our modelling results show that the variations of chemistry, mineralogy, and temperature and AI enrichment at the bottom lower mantle can cause an increase have different seismic signatures from each other. The Fe in p but greatly lower V.. A change in mineralogy needs to be considered with the lateral variation in temperature. The cold slabs will be shown as denser regions compared to the normal mantle because of the combined effect of a lower temperature and the presence of a denser post-perovskite at a shallower depth, whereas the hot regions will have a 1-2% lower p than the normal mantle. V, of both cold slabs and hot regions will he lower than the normal mantle when bridgmanite is the dominant phase in the normal mantle, yet they will be greater once bridgmanite transforms into post-perovskite in the normal mantle. Our modeling also shows that the presence of a (Fe, Al)-enriched bridgmanite thermal pile above the core-mantle boundary will exhibit a seismic signature of enhancedp and V., but a reduced Vs, which is consistent with the observed seismic anomalies in the large-low-shear-velocity-provinces (LLSVPs). The existence of such a (Fe, A1)-enriched bridgmanite thermal pile thus can help to understand the origin of the LLSVPs. These results provide new insights for the chemical and structure of the deepest lower mantle.展开更多
基金Under the auspices of Minister of Education(MOE)Project of Key Research Institutes of Humanities and Social Sciences in Universities(No.16JJD790021)National Natural Science Foundation of China(No.41671119)
文摘This study focuses on China's coastal area and its marine economic development. Applying the information diffusion method, the study establishes a kernel density function and its decomposition using a marine economic per capita as the index of the model to depict the dynamic evolution law and the internal influential factors of the Chinese marine economy during 1996–2013. The relative development rate was introduced to analyze the spatial differences in the marine economy's development. In this way, space and time dimensions fully characterized the evolution of the Chinese marine economy. Additionally, the influence of growth and inequality in the process of its development can be analyzed. The study shows that the Chinese marine economy as a whole has been growing, and regional marine economic development is relatively coordinated. In addition, the marine economy began to develop even more rapidly after 2004. There are three factors affecting the dynamic evolution of China's marine economy: first, the most influential mean effect, followed by, second, the variance effect, and third, the least influential residual effect. The biggest influence on the dynamic evolution of the marine economy is the improvement of the development level of the marine economy in the coastal area. Meanwhile, due to the existence of inequality, provinces at higher development levels are more dispersed. Furthermore, the existence of the residual effect weakens the influence of the mean effect, and the influence on the dynamic evolution of the marine economy continuously increases. In the analysis of the influencing factors of the evolution and spatial difference of marine economic development, the level of opening to the outside world, the level of investment in fixed assets and the industrial structure have a positive role in promoting economic development. However, capital investment in scientific human research has a negative correlation with economic development, and does not pass the significant test. The difference in regional development levels and development speed is also very apparent; namely, the provinces with higher development levels generally displayed faster development speeds while those with lower development levels showed slower development speeds across the four periods analyzed.
文摘In this work, esterification of acetic acid and methanol to synthesize methyl acetate in a batch stirred reactor is studied in the temperature range of 305.15–333.15 K. Sulfuric acid is used as the homogeneous catalyst with concentrations ranging from 0.0633 mol·L-1to 0.3268 mol·L-1. The feed molar ratio of acetic acid to methanol is varied from 1:1 to 1:4. The influences of temperature, catalyst concentration and reactant concentration on the reaction rate are investigated. A second order kinetic rate equation is used to correlate the experimental data. The forward and backward reaction rate constants and activation energies are determined from the Arrhenius plot.The developed kinetic model is compared with the models in literature. The developed kinetic equation is useful for the simulation of reactive distillation column for the synthesis of methyl acetate.
基金Projects(U1202274,51004033,51204040,50974035)supported by the National Natural Science Foundation of ChinaProjects(2010AA03A405,2012AA062303)supported by the National High Technology Research and Development Program(863 Prograam)of ChinaProject(N100302005)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effects of magnetic field intensity, roasting temperature and roasting time on digestion rate and settling performance of bauxite with different iron contents were investigated systematically. The results indicate that such magnetic treatment can profoundly change the microstructure and digestion performance of bauxite. For the two samples carrying different iron contents, phase transformation of the aluminum oxide phase proceeds faster in the high iron bauxite than the low one. The optimal pretreatment conditions of low iron bauxite are roasting temperature 550 ℃ and magnetic field intensity 6 T, while for high iron bauxite are 500 ℃ and 9 T. The digestion rate of alumina can reach 95% and 92% at digestion temperature of 190 ℃ and 250 ℃. The settling performances of roasted ore by intense magnetic field after digestion are enhanced through pretreatment.
基金supported by the National Natural Science Foundation of China(Grant No.41522203)the National Basic Research Program of China(Grant No.2014CB845904)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.WK2080000097)the Recruitment Program of Global Experts(Thousand Talents),China
文摘In this study, we have modeled the density (p) and bulk sound velocity (V.) profiles of the bottom lower mantle using the experimental thermal equation of state (EoS) parameters of lower-mantle minerals, including bridgmanite, ferropericlase, CaSiO3-perovskite, and post-perovskite. We re-evaluated the literature pressure-volume-temperature relationships of these minerals using a self-consistent pressure scale in order to avoid the long-standing pressure scale problem and to provide more reliable constraints on the thermal EoS parameters. With the obtained thermal EoS parameters, we have constructed the p and V. profiles of the bottom lower mantle in different composition, mineralogy, and temperature models. Our modelling results show that the variations of chemistry, mineralogy, and temperature and AI enrichment at the bottom lower mantle can cause an increase have different seismic signatures from each other. The Fe in p but greatly lower V.. A change in mineralogy needs to be considered with the lateral variation in temperature. The cold slabs will be shown as denser regions compared to the normal mantle because of the combined effect of a lower temperature and the presence of a denser post-perovskite at a shallower depth, whereas the hot regions will have a 1-2% lower p than the normal mantle. V, of both cold slabs and hot regions will he lower than the normal mantle when bridgmanite is the dominant phase in the normal mantle, yet they will be greater once bridgmanite transforms into post-perovskite in the normal mantle. Our modeling also shows that the presence of a (Fe, Al)-enriched bridgmanite thermal pile above the core-mantle boundary will exhibit a seismic signature of enhancedp and V., but a reduced Vs, which is consistent with the observed seismic anomalies in the large-low-shear-velocity-provinces (LLSVPs). The existence of such a (Fe, A1)-enriched bridgmanite thermal pile thus can help to understand the origin of the LLSVPs. These results provide new insights for the chemical and structure of the deepest lower mantle.