The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this stu...The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this study,4 D seismic monitoring technology that is effective in reservoir development was used to monitor abnormal changes in coal-mine underground goaf to explore the feasibility of the method.Taking a coal mine in Hancheng,Shaanxi as an example,we used the aforementioned technology to dynamically monitor the abnormal changes in the goaf.Based on the 4 D seismic data obtained in the experiment and the abnormal change characteristics of the coal-mine goaf,the method of 4 D seismic data processing in reservoir was improved.A set of 4 D data processing flow for the goaf was established,and the anomalies in the surface elevation and overlying strata velocity caused by collapse were corrected.We have made the following improvements to the method of 4 D seismic data processing in the reservoir:(1)the static correction problem caused by the changes of surface elevation and destruction of the low-velocity layer has been solved through fusion static correction to comb the low-frequency components of elevation statics with the high-frequency components of refraction statics;(2)the problem of overlying strata velocity changes in the goaf caused by collapse has been solved through the velocity consistency method;(3)the problem of reflection event pull-down in the disturbance area has been solved through space-varying moveout correction based on cross-correlation;and(4)amplitude anomalies in the coal seam caused by the goaf have been addressed using the correction method of space-varying amplitude.Results show that the 4 D seismic data processing and interpretation method established in this study is reasonable and effective.展开更多
In the middle and second half of oilfield development,further exploration and development of petroleum reservoirs in complex fault blocks are major tasks.Based on the characteristics of fully developed farewell faults...In the middle and second half of oilfield development,further exploration and development of petroleum reservoirs in complex fault blocks are major tasks.Based on the characteristics of fully developed farewell faults in the Wenweigu oil field and the data from 3D earthquakes,RFT,HDT and other techniques,farewell faults and their distribution were identified.Conformation of the fault blocks has been provided and the precision of describing the farewell faults improved.Research technology of farewell faults has applied these methods in this region.展开更多
Movement and deformation of underground rock include vertical dislocation and horizontal deformation,and the energy released by mine earthquake can be calculated basing on deformation energy.So put forwards the predic...Movement and deformation of underground rock include vertical dislocation and horizontal deformation,and the energy released by mine earthquake can be calculated basing on deformation energy.So put forwards the prediction for degree and spread of mine earthquake according to the underground rock's movement and deformation.The actual number of times and spread of mine earthquake on site were greatly identical to the prediction.The practice proves the possibility of prediction for mine earthquake basing on the analysis of underground rock's movement and deformation,and sets up new approach of mine earthquake prediction.展开更多
In order to reveal the relationship between water injection in mine wells in the Zigong area and seismicity, we divide the historical earthquakes of ML ≥ 1.2 into 3 phases according to seismicity behavior, and the ET...In order to reveal the relationship between water injection in mine wells in the Zigong area and seismicity, we divide the historical earthquakes of ML ≥ 1.2 into 3 phases according to seismicity behavior, and the ETAS model parameters are then inversed by the POWELL method. The results show that phase 1 and 2, in which there is no water injection, have moderate-to-low ratio of background earthquakes (40 % - 50 % ), and aftershocks are relatively less for a single earthquake sequence. In phase 3, where there is water injection, the aftershocks triggered by foreshocks dominate ( 93. 1% ), and background earthquakes amount only to 6. 9 %, less than those of phase 1 and 2. The results conflict with the existing cognition. To resolve this problem, we propose that the occurrence ratio of background earthquakes in unit time, that is, the p value in ETAS model is used as an indicator of water injection triggered earthquakes. Compared to the first two phases, phase 3 has the largest u value, which illustrates that the water injection has an obvious triggering effect on earthquakes of this region.展开更多
基金funded by the National Key Research and Development Program Subject(No.2018YFC0807804)。
文摘The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this study,4 D seismic monitoring technology that is effective in reservoir development was used to monitor abnormal changes in coal-mine underground goaf to explore the feasibility of the method.Taking a coal mine in Hancheng,Shaanxi as an example,we used the aforementioned technology to dynamically monitor the abnormal changes in the goaf.Based on the 4 D seismic data obtained in the experiment and the abnormal change characteristics of the coal-mine goaf,the method of 4 D seismic data processing in reservoir was improved.A set of 4 D data processing flow for the goaf was established,and the anomalies in the surface elevation and overlying strata velocity caused by collapse were corrected.We have made the following improvements to the method of 4 D seismic data processing in the reservoir:(1)the static correction problem caused by the changes of surface elevation and destruction of the low-velocity layer has been solved through fusion static correction to comb the low-frequency components of elevation statics with the high-frequency components of refraction statics;(2)the problem of overlying strata velocity changes in the goaf caused by collapse has been solved through the velocity consistency method;(3)the problem of reflection event pull-down in the disturbance area has been solved through space-varying moveout correction based on cross-correlation;and(4)amplitude anomalies in the coal seam caused by the goaf have been addressed using the correction method of space-varying amplitude.Results show that the 4 D seismic data processing and interpretation method established in this study is reasonable and effective.
文摘In the middle and second half of oilfield development,further exploration and development of petroleum reservoirs in complex fault blocks are major tasks.Based on the characteristics of fully developed farewell faults in the Wenweigu oil field and the data from 3D earthquakes,RFT,HDT and other techniques,farewell faults and their distribution were identified.Conformation of the fault blocks has been provided and the precision of describing the farewell faults improved.Research technology of farewell faults has applied these methods in this region.
基金the Education Research Project of Liaoning(20060388)Liaoning Technology University Project(06A07)
文摘Movement and deformation of underground rock include vertical dislocation and horizontal deformation,and the energy released by mine earthquake can be calculated basing on deformation energy.So put forwards the prediction for degree and spread of mine earthquake according to the underground rock's movement and deformation.The actual number of times and spread of mine earthquake on site were greatly identical to the prediction.The practice proves the possibility of prediction for mine earthquake basing on the analysis of underground rock's movement and deformation,and sets up new approach of mine earthquake prediction.
基金supported by "Study on Strong Earthquake Risk in Southern Region of Longmenshan Fault,Huayingshan Fault and Border Area of Sichuan and Yunnan Provinces",Department of Earthquake Monitoring and Prediction,China Earthquake Administration
文摘In order to reveal the relationship between water injection in mine wells in the Zigong area and seismicity, we divide the historical earthquakes of ML ≥ 1.2 into 3 phases according to seismicity behavior, and the ETAS model parameters are then inversed by the POWELL method. The results show that phase 1 and 2, in which there is no water injection, have moderate-to-low ratio of background earthquakes (40 % - 50 % ), and aftershocks are relatively less for a single earthquake sequence. In phase 3, where there is water injection, the aftershocks triggered by foreshocks dominate ( 93. 1% ), and background earthquakes amount only to 6. 9 %, less than those of phase 1 and 2. The results conflict with the existing cognition. To resolve this problem, we propose that the occurrence ratio of background earthquakes in unit time, that is, the p value in ETAS model is used as an indicator of water injection triggered earthquakes. Compared to the first two phases, phase 3 has the largest u value, which illustrates that the water injection has an obvious triggering effect on earthquakes of this region.