期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多信息融合与神经网络的矿区目标体重建方法研究
1
作者
史律
李建林
《矿业研究与开发》
CAS
北大核心
2020年第8期150-154,共5页
为提高矿区目标体的重建效果,提出了一种将点云数据与图片进行融合的重建方法。通过MATLAB获得目标体的点云数据,对目标体的点云数据进行拼接以及表面重建。以清晰程度、纹理复杂度以及曝光率作为评价图片质量的3个因素,利用BP神经网络...
为提高矿区目标体的重建效果,提出了一种将点云数据与图片进行融合的重建方法。通过MATLAB获得目标体的点云数据,对目标体的点云数据进行拼接以及表面重建。以清晰程度、纹理复杂度以及曝光率作为评价图片质量的3个因素,利用BP神经网络对目标体图片的质量进行分级,在卷积神经网络的基础上搭建BP神经网络对目标体图片中的部分进行识别。最终通过融合激光雷达、单目相机所获得的点云数据与图片来实现目标体的重建。结果显示,BP神经网络的分级准确率为96.39%,BP神经网络的最低识别率为96.4%,通过融合后重建目标体的误差小于±0.12m。研究结果为目标体的定位、矿区救援提供了参考依据。
展开更多
关键词
矿区目标体
信息融合
重建方法
BP神经网络
激光雷达
原文传递
题名
基于多信息融合与神经网络的矿区目标体重建方法研究
1
作者
史律
李建林
机构
南京信息职业技术学院
出处
《矿业研究与开发》
CAS
北大核心
2020年第8期150-154,共5页
基金
江苏省“333工程”高层次人才培养科研资助项目(BRA2019303)
江苏省高校“青蓝工程”优秀教学团队资助项目(苏教师[2019]3号).
文摘
为提高矿区目标体的重建效果,提出了一种将点云数据与图片进行融合的重建方法。通过MATLAB获得目标体的点云数据,对目标体的点云数据进行拼接以及表面重建。以清晰程度、纹理复杂度以及曝光率作为评价图片质量的3个因素,利用BP神经网络对目标体图片的质量进行分级,在卷积神经网络的基础上搭建BP神经网络对目标体图片中的部分进行识别。最终通过融合激光雷达、单目相机所获得的点云数据与图片来实现目标体的重建。结果显示,BP神经网络的分级准确率为96.39%,BP神经网络的最低识别率为96.4%,通过融合后重建目标体的误差小于±0.12m。研究结果为目标体的定位、矿区救援提供了参考依据。
关键词
矿区目标体
信息融合
重建方法
BP神经网络
激光雷达
Keywords
Mining area target body
Information fusion reconstruction method
BP neural network
Lidar
分类号
TD73 [矿业工程—矿井通风与安全]
TD315 [矿业工程—矿井建设]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于多信息融合与神经网络的矿区目标体重建方法研究
史律
李建林
《矿业研究与开发》
CAS
北大核心
2020
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部