期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于离散小波域深度残差学习的矿区遥感图像增强算法
1
作者 李亦珂 王春梅 《金属矿山》 CAS 北大核心 2024年第4期215-220,共6页
实现矿区遥感图像增强处理,有助于提升后续图像判别以及相关监测分析效率。以往矿区遥感图像增强一般采用滤波、灰度变换等方法,往往会导致图像大量细节信息丢失,在很大程度上影响了后续判读分析。近年来,深度学习方法逐步应用于图像增... 实现矿区遥感图像增强处理,有助于提升后续图像判别以及相关监测分析效率。以往矿区遥感图像增强一般采用滤波、灰度变换等方法,往往会导致图像大量细节信息丢失,在很大程度上影响了后续判读分析。近年来,深度学习方法逐步应用于图像增强处理,但该方法很大程度上依赖于模型设计和参数合理取值,需要进行大量的试验和优化方可取得理想效果。将深度学习方法(Deep Learning,DL)与离散小波变换(Discrete Wavelet Transform,DWT)相结合,提出了一种基于离散小波域深度残差学习的矿区遥感图像增强算法。首先将图像进行单级二维离散小波变换,得到4个子带;然后将4个子带系数输入深度学习残差网络,预测相应的残差图像增加4个子带图像和残差图像作为二维小波变换的新子带;最后通过二维离散小波逆变换得到增强图像。试验结果表明:所提算法相对于直方图均衡化和超分辨率重建等方法而言,无论在图像视觉效果以及峰值信噪比、结构相似性、均方误差等评价指标上都具有较好优势,反映出将离散小波变换与深度学习方法相结合,有助于提升矿区遥感图像视觉效果,方便后续图像解译判读工作。 展开更多
关键词 矿区遥感图像 离散小波变换 深度学习 图像增强
下载PDF
双树复小波变换域矿区遥感图像自适应滤波 被引量:3
2
作者 张丽娟 《金属矿山》 CAS 北大核心 2015年第11期113-118,共6页
矿区遥感图像因受成像环境、成像器件固有缺陷等因素的影响容易出现不同程度的失真,为此,结合双树复小波变换(Dual-tree complex wavelet transform,DTCWT)多尺度图像分析的优良特性,提出了一种矿区遥感图像自适应滤波算法。首先对获取... 矿区遥感图像因受成像环境、成像器件固有缺陷等因素的影响容易出现不同程度的失真,为此,结合双树复小波变换(Dual-tree complex wavelet transform,DTCWT)多尺度图像分析的优良特性,提出了一种矿区遥感图像自适应滤波算法。首先对获取的视觉效果不佳的遥感图像进行直方图均衡化处理,使得增强后的图像灰度分布较为合理,提高图像的对比度;然后对增强后的图像进行双树复小波变换,对获得的高频分解系数采用改进的多级中值滤波算法进行处理;最后,将低频分解系数与滤波后的高频分解系数进行逆双树复小波变换。其中改进的多级中值滤波算法相对于经典多级中值滤波算法进行了2点改进:1将原有的4个方向滤波窗口扩展为7个,更有利于保持图像中信息的多方向特性;2对新增设的3个滤波窗口分别进行加权中值滤波,将上述7个滤波窗口的滤波值采用一种基于图像灰度值相关性的判别方法进行处理,剔除与待滤波像素点相关性不强的滤波值,将剩余的滤波值计算均值输出;MATLAB平台试验结果表明:新算法的总体性能相对于经典多级中值滤波、中值滤波、双边滤波等算法而言,优势较为明显。 展开更多
关键词 矿区遥感图像 双树复小波变换 直方图均衡化 多级中值滤波算法 改进多级中值滤波算法
下载PDF
矿区遥感图像去噪方法研究 被引量:8
3
作者 车守全 李涛 +1 位作者 包从望 江伟 《工矿自动化》 北大核心 2022年第1期113-118,124,共7页
去噪是矿区遥感图像得以有效应用的重要预处理步骤。现有的基于统计、基于域变换、基于学习等遥感图像去噪方法普遍存在细节过度平滑、纹理保持不足等问题。基于引导滤波良好的边缘保持特性,提出了迭代引导滤波方法,通过对残差信息进行... 去噪是矿区遥感图像得以有效应用的重要预处理步骤。现有的基于统计、基于域变换、基于学习等遥感图像去噪方法普遍存在细节过度平滑、纹理保持不足等问题。基于引导滤波良好的边缘保持特性,提出了迭代引导滤波方法,通过对残差信息进行引导映射,并迭代进行引导滤波及超参数收缩,增强了遥感图像边缘特征提取效果;将迭代引导滤波与传统的小波软阈值、非局部均值(NLM)滤波、三维块匹配(BM3D)滤波等去噪方法结合,有效提高了传统方法的峰值信噪比,其中NLM滤波、BM3D滤波的去噪性能提升效果最明显;将迭代引导滤波与BM3D滤波融合,通过BM3D滤波初步获取去噪图像,得到残差数据,然后采用迭代引导滤波对残差数据进行处理,在提升图像去噪效果的同时,很好地保持了图像细节特征;将迭代引导滤波与BM3D滤波融合方法用于矿区遥感图像的煤矸石场识别及滑坡区域边缘识别,取得了较好的效果。 展开更多
关键词 矿区遥感图像 图像去噪 边缘保持 迭代引导滤波 三维块匹配 BM3D
下载PDF
露天煤矿采场无人机遥感图像小目标检测 被引量:1
4
作者 刘洺睿 车奔 +1 位作者 董洪波 朱若篱 《煤田地质与勘探》 EI CAS CSCD 北大核心 2023年第11期132-140,共9页
露天煤矿采场地形复杂,车辆事故时有发生,准确定位车辆位置对于安全生产至关重要。针对矿区无人机遥感图像小目标定位不准确的问题,提出了一种改进的YOLOv7目标检测模型。首先对原始网络模型中的ELAN模块进行卷积替换,加速网络的推理速... 露天煤矿采场地形复杂,车辆事故时有发生,准确定位车辆位置对于安全生产至关重要。针对矿区无人机遥感图像小目标定位不准确的问题,提出了一种改进的YOLOv7目标检测模型。首先对原始网络模型中的ELAN模块进行卷积替换,加速网络的推理速度。并在此基础上,进一步结合eSE通道注意力机制,形成PConv-eSE卷积注意力模块,加强模型网络对小目标的特征提取能力,降低背景信息的影响。最后,使用NWD度量标准的损失函数,进一步优化网络,提高准确性。在矿区采场车辆数据集上对改进的模型进行了实验验证,结果表明:改进后的模型P_(mav)值达到94.5%,相对于原始模型上升了7.2%,有效解决了原始网络对于遥感小目标定位漏检的问题,为无人机在露天矿区小目标定位领域的应用提供了理论基础。 展开更多
关键词 露天煤矿 无人机 矿区遥感图像 小目标检测 YOLOv7 注意力机制 NWD度量
下载PDF
SOME KEY ISSUES ON THE APPLICATION OF SATELLITE REMOTE SENSING TO MINING AREAS 被引量:1
5
作者 DUPein-jun ZHOUXing-dong GUODa-zhi 《Chinese Geographical Science》 SCIE CSCD 2003年第1期79-83,共5页
In order to apply Satellite Remote Sensing (RS) to mining areas, some key issues should be solved. Based on an introduction to relative studying background, related key issues are proposed and analyzed oriented to the... In order to apply Satellite Remote Sensing (RS) to mining areas, some key issues should be solved. Based on an introduction to relative studying background, related key issues are proposed and analyzed oriented to the development of RS information science and demands of mining areas. Band selection and combination optimization of Landsat TM is discussed firstly, and it proved that the combination of Band 3, Band 4 and Band 5 has the largest information amount in all three-band combination schemes by both N-dimensional entropy method and Genetic Algorithm (GA). After that the filtering of Radarsat image is discussed. Different filtering methods are experimented and compared, and adaptive methods are more efficient than others. Finally the classification of satellite RS image is studied, and some new methods including classification by improved BPNN(Back Propagation Neural Network) and classification based on GIS and knowledge are proposed. 展开更多
关键词 Satellite Remote Sensing mining areas band combination FILTERING image classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部