The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste roc...The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste rock dump under construction on two adjoining tailings ponds. The consolidation of the tailings foundation and the filling quality of the waste rock are investigated by the transient electromagnetic method through detecting water-rich areas and loose packing areas, from which, the depth of phreatic line is also estimated. With such information and the material parameters, the numerical method based on shear strength reduction is applied to analyzing the overall stability of the waste rock dump and the tailings ponds over a number of typical cross sections under both current and designed conditions, where the complex geological profiles exposed by site investigation are considered. Through numerical experiments, the influence of soft lenses in the tailings and possible loose packing areas in the waste rock is examined. Although large displacements may develop due to the soft tailings foundation, the results show that the waste rock dump satisfies the safety requirements under both present and designed conditions.展开更多
Mining activities may cause serious damages to the river ecological environment in mining areas. It has been realized that challenging is faced for optimal decision-making on the river ecological restoration resulting...Mining activities may cause serious damages to the river ecological environment in mining areas. It has been realized that challenging is faced for optimal decision-making on the river ecological restoration resulting from system complexity, multi-objectives, long term restoration in which multiple stages may be needed to take, and difficulty in detailed process quan- tification. By analyzing and fully reflecting the differences between the central zone and surrounding zones of the restored river passing through the mining area, the comprehensive evaluation index systems of the central zone and surrounding zones are separately suggested firstly. Then a scenario-based optimization decision-making model for river ecological restoration in min- ing areas was established with taking advantages of spatial divisions and following procedure of first going through optimiza- tion by sub-region level, then optimizing by integration. Then, a framework for scenario-based optimal decision-making on water-deficient river ecological restoration in mining areas is proposed in which a multi-objective and multi-stage spatial division optimization method is considered to improve decision-making efficiency and enhance its practicability. It is indicated that this optimization framework is reasonable and practical, which is expected to offer reliable decision support in identifying the effective solutions on optimal management of the water-deficient river ecological restoration in mining areas. At the same time, it has implications in general land reclamation and ecological restoration in the mining areas.展开更多
基金Projects(51209118,71373245)supported by the National Natural Science Foundation of ChinaProject(2014JBKY01)supported by the Fundamental Research Funds for CASST,China
文摘The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste rock dump under construction on two adjoining tailings ponds. The consolidation of the tailings foundation and the filling quality of the waste rock are investigated by the transient electromagnetic method through detecting water-rich areas and loose packing areas, from which, the depth of phreatic line is also estimated. With such information and the material parameters, the numerical method based on shear strength reduction is applied to analyzing the overall stability of the waste rock dump and the tailings ponds over a number of typical cross sections under both current and designed conditions, where the complex geological profiles exposed by site investigation are considered. Through numerical experiments, the influence of soft lenses in the tailings and possible loose packing areas in the waste rock is examined. Although large displacements may develop due to the soft tailings foundation, the results show that the waste rock dump satisfies the safety requirements under both present and designed conditions.
文摘Mining activities may cause serious damages to the river ecological environment in mining areas. It has been realized that challenging is faced for optimal decision-making on the river ecological restoration resulting from system complexity, multi-objectives, long term restoration in which multiple stages may be needed to take, and difficulty in detailed process quan- tification. By analyzing and fully reflecting the differences between the central zone and surrounding zones of the restored river passing through the mining area, the comprehensive evaluation index systems of the central zone and surrounding zones are separately suggested firstly. Then a scenario-based optimization decision-making model for river ecological restoration in min- ing areas was established with taking advantages of spatial divisions and following procedure of first going through optimiza- tion by sub-region level, then optimizing by integration. Then, a framework for scenario-based optimal decision-making on water-deficient river ecological restoration in mining areas is proposed in which a multi-objective and multi-stage spatial division optimization method is considered to improve decision-making efficiency and enhance its practicability. It is indicated that this optimization framework is reasonable and practical, which is expected to offer reliable decision support in identifying the effective solutions on optimal management of the water-deficient river ecological restoration in mining areas. At the same time, it has implications in general land reclamation and ecological restoration in the mining areas.