The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability ...The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines.展开更多
A Bayes discriminant analysis method to identify the risky of complicated goaf in mines was presented. Nine factors influencing the stability of goaf risky, including uniaxial compressive strength of rock, elastic mod...A Bayes discriminant analysis method to identify the risky of complicated goaf in mines was presented. Nine factors influencing the stability of goaf risky, including uniaxial compressive strength of rock, elastic modulus of rock, rock quality designation (RQD), area ratio of pillar, ratio of width to height of pillar, depth of ore body, volume of goaf, dip of ore body and area of goal, were selected as discriminant indexes in the stability analysis of goal. The actual data of 40 goals were used as training samples to establish a discriminant analysis model to identify the stability of goaf. The results show that this discriminant analysis model has high precision and misdiscriminant ratio is 0.025 in re-substitution process. The instability identification of a metal mine was distinguished by using this model and the identification result is identical with that of practical situation.展开更多
Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining...Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining floor strata. Then the study applied Fourier integral transform to solve a biharmonic equation,obtaining the analytical solution of the stress and displacement of the mining floor. Additionally, this investigation used the Mohr–Coulomb yield criterion to determine the plastic failure depth of the floor strata. The calculation process showed that the plastic failure depth of the floor and floor heave are related to the mining width, burial depth and physical–mechanical properties. The results from an example show that the curve of the plastic failure depth of the mining floor is characterized by a funnel shape and the maximum failure depth generates in the middle of mining floor; and that the maximum and minimum principal stresses change distinctly in the shallow layer and tend to a fixed value with an increase in depth. Based on the displacement results, the maximum floor heave appears in the middle of the stope and its value is 0.107 m. This will provide a basis for floor control. Lastly, we have verified the analytical results using FLAC3 Dto simulate floor excavation and find that there is some deviation between the two results, but their overall tendency is consistent which illustrates that the analysis method can well solve the stress and displacement of the floor.展开更多
The problem of water preservation in mining and the prevention of water-bursts has been one of the more important issues in deep mining. Based on the concept of water-resisting key strata, the mechanics model of the k...The problem of water preservation in mining and the prevention of water-bursts has been one of the more important issues in deep mining. Based on the concept of water-resisting key strata, the mechanics model of the key strata is established given the structural characteristics and the mechanical properties of the roof rock layers of the working face in a particular coal mine. Four other models were derived from this model by rearranging the order of the layers in the key strata. The distribution characteristics of stress, deformation, pore pressure and the flow vector of all the models are computed using the analytical module of fluid-structure interaction in the FLAC software and the corresponding risks of a water-burst are analyzed. The results indicate that the water-insulating ability of the key strata is related to the arrangement of soft and hard rocks. The water-insulating ability of the compound water-resisting key strata (CWKS) with a hard-hard-soft-hard-soft compounding order is the best under the five given simulated conditions.展开更多
The coupling mechanism in freezing process of seepage ground was studied and a simplified coupling math model was proposed. The nonlinear and coupling problems of PDEs were well solved using the exponential function, ...The coupling mechanism in freezing process of seepage ground was studied and a simplified coupling math model was proposed. The nonlinear and coupling problems of PDEs were well solved using the exponential function, error function and normal distribution function, and a series of FEM equations of coupled fields of temperature and seepage were deduced and put forward. With the example of shaft ground freezing, the formation of freezing wall in seepage ground was simulated.展开更多
The distributed shear stress and the displacement across shear band, the evolution of plastic zones, and the load-carrying capacity of rock specimen were investigated in plane strain direct shear test according to Fas...The distributed shear stress and the displacement across shear band, the evolution of plastic zones, and the load-carrying capacity of rock specimen were investigated in plane strain direct shear test according to Fast Lagrangian Analysis of Continua (FLAC). And then the shear displacement distribution in normal direction of system composed of localized shear band and elastic rock was analyzed based on gradient-dependent plasticity. The adopted failure criterion was a composite of Mohr-Coulomb criterion, that is, the relation between tension cut-off and postpeak constitutive of rock was linear strain-softening. Numerical results show that shear stress field approximately undergoes three different stages. At first, shear stress is only concentrated in the middle of top and base of specimen. Next, shear stress in the middle of specimen tends to increase, owing to superposition of shear stresses. Interestingly, two peaks of shear stress appear far from the loading ends of specimen, and the peaks approach with the increase in timestep until elements at the center of specimen yield. Finally, relatively lower shear stress level is reached in large part of specimen except in the regions near the two ends. As flow stress decreases, the analytical shear displacement distribution in shear band based on gradient-dependent plasticity becomes steeps outside the band, it is linear and its slope tends to decrease. These theoretical results qualitatively agree with that of the present numerical predicted results. Main advantage of the analytical solution over the numerical results according to FLAC is that it is continuous, smooth and non-linear (except at elastic stage).展开更多
A fuzzy evaluation method was used to evaluate the microclimate in thermal mines. A theoretical model of a microclimate evaluation system was designed and membership functions of the evaluation indices in the system w...A fuzzy evaluation method was used to evaluate the microclimate in thermal mines. A theoretical model of a microclimate evaluation system was designed and membership functions of the evaluation indices in the system were established. An analytical hierarchy process (AHP) was used to analyze the weight of the evalua- tion indices and their methods of calculation. Software for this evaluation system was developed and used for the evaluation of the microclimate of 714 sections in a mine. It is shown that the evaluation results correspond com- pletely with the actual situation. This evaluation system and the software can be applied in thermal mines.展开更多
基金Project (50934006) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by the National Basic Research Program of ChinaProject (CX2011B119) supported by the Graduated Students’ Research and Innovation Fund Project of Hunan Province of China
文摘The purpose of this study is to apply some statistical and soft computing methods such as Fisher discriminant analysis (FDA) and support vector machines (SVMs) methodology to the determination of pillar stability for underground mines selected from various coal and stone mines by using some index and mechanical properties, including the width, the height, the ratio of the pillar width to its height, the uniaxial compressive strength of the rock and pillar stress. The study includes four main stages: sampling, testing, modeling and assessment of the model performances. During the modeling stage, two pillar stability prediction models were investigated with FDA and SVMs methodology based on the statistical learning theory. After using 40 sets of measured data in various mines in the world for training and testing, the model was applied to other 6 data for validating the trained proposed models. The prediction results of SVMs were compared with those of FDA as well as the measured field values. The general performance of models developed in this study is close; however, the SVMs exhibit the best performance considering the performance index with the correct classification rate Prs by re-substitution method and Pcv by cross validation method. The results show that the SVMs approach has the potential to be a reliable and practical tool for determination of pillar stability for underground mines.
基金Project (2010CB732004) supported by the National Basic Research Program of China
文摘A Bayes discriminant analysis method to identify the risky of complicated goaf in mines was presented. Nine factors influencing the stability of goaf risky, including uniaxial compressive strength of rock, elastic modulus of rock, rock quality designation (RQD), area ratio of pillar, ratio of width to height of pillar, depth of ore body, volume of goaf, dip of ore body and area of goal, were selected as discriminant indexes in the stability analysis of goal. The actual data of 40 goals were used as training samples to establish a discriminant analysis model to identify the stability of goaf. The results show that this discriminant analysis model has high precision and misdiscriminant ratio is 0.025 in re-substitution process. The instability identification of a metal mine was distinguished by using this model and the identification result is identical with that of practical situation.
基金the National Basic Research Program of China(No.2014CB046300)the National Natural Science Foundation of China(No.51174196)
文摘Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining floor strata. Then the study applied Fourier integral transform to solve a biharmonic equation,obtaining the analytical solution of the stress and displacement of the mining floor. Additionally, this investigation used the Mohr–Coulomb yield criterion to determine the plastic failure depth of the floor strata. The calculation process showed that the plastic failure depth of the floor and floor heave are related to the mining width, burial depth and physical–mechanical properties. The results from an example show that the curve of the plastic failure depth of the mining floor is characterized by a funnel shape and the maximum failure depth generates in the middle of mining floor; and that the maximum and minimum principal stresses change distinctly in the shallow layer and tend to a fixed value with an increase in depth. Based on the displacement results, the maximum floor heave appears in the middle of the stope and its value is 0.107 m. This will provide a basis for floor control. Lastly, we have verified the analytical results using FLAC3 Dto simulate floor excavation and find that there is some deviation between the two results, but their overall tendency is consistent which illustrates that the analysis method can well solve the stress and displacement of the floor.
基金Projects 50490270 supported by the National Natural Science Foundation of China, 50634050 the National Natural Science Foundation of China and 2006A038 SR Foundation of China University of Mining & Technology
文摘The problem of water preservation in mining and the prevention of water-bursts has been one of the more important issues in deep mining. Based on the concept of water-resisting key strata, the mechanics model of the key strata is established given the structural characteristics and the mechanical properties of the roof rock layers of the working face in a particular coal mine. Four other models were derived from this model by rearranging the order of the layers in the key strata. The distribution characteristics of stress, deformation, pore pressure and the flow vector of all the models are computed using the analytical module of fluid-structure interaction in the FLAC software and the corresponding risks of a water-burst are analyzed. The results indicate that the water-insulating ability of the key strata is related to the arrangement of soft and hard rocks. The water-insulating ability of the compound water-resisting key strata (CWKS) with a hard-hard-soft-hard-soft compounding order is the best under the five given simulated conditions.
文摘The coupling mechanism in freezing process of seepage ground was studied and a simplified coupling math model was proposed. The nonlinear and coupling problems of PDEs were well solved using the exponential function, error function and normal distribution function, and a series of FEM equations of coupled fields of temperature and seepage were deduced and put forward. With the example of shaft ground freezing, the formation of freezing wall in seepage ground was simulated.
文摘The distributed shear stress and the displacement across shear band, the evolution of plastic zones, and the load-carrying capacity of rock specimen were investigated in plane strain direct shear test according to Fast Lagrangian Analysis of Continua (FLAC). And then the shear displacement distribution in normal direction of system composed of localized shear band and elastic rock was analyzed based on gradient-dependent plasticity. The adopted failure criterion was a composite of Mohr-Coulomb criterion, that is, the relation between tension cut-off and postpeak constitutive of rock was linear strain-softening. Numerical results show that shear stress field approximately undergoes three different stages. At first, shear stress is only concentrated in the middle of top and base of specimen. Next, shear stress in the middle of specimen tends to increase, owing to superposition of shear stresses. Interestingly, two peaks of shear stress appear far from the loading ends of specimen, and the peaks approach with the increase in timestep until elements at the center of specimen yield. Finally, relatively lower shear stress level is reached in large part of specimen except in the regions near the two ends. As flow stress decreases, the analytical shear displacement distribution in shear band based on gradient-dependent plasticity becomes steeps outside the band, it is linear and its slope tends to decrease. These theoretical results qualitatively agree with that of the present numerical predicted results. Main advantage of the analytical solution over the numerical results according to FLAC is that it is continuous, smooth and non-linear (except at elastic stage).
基金Project 50274066 supported by National Natural Science Foundation of China
文摘A fuzzy evaluation method was used to evaluate the microclimate in thermal mines. A theoretical model of a microclimate evaluation system was designed and membership functions of the evaluation indices in the system were established. An analytical hierarchy process (AHP) was used to analyze the weight of the evalua- tion indices and their methods of calculation. Software for this evaluation system was developed and used for the evaluation of the microclimate of 714 sections in a mine. It is shown that the evaluation results correspond com- pletely with the actual situation. This evaluation system and the software can be applied in thermal mines.