In order to understand the mechanism and regularity of the groundwater contamination from mine water of abandoned mines, experiments were conducted on an abandoned coal mine in Fuxin, a representative city with lots o...In order to understand the mechanism and regularity of the groundwater contamination from mine water of abandoned mines, experiments were conducted on an abandoned coal mine in Fuxin, a representative city with lots of mine water in northeast China. The groundwater pollution from different contaminants of coal-mining voids (total hardness, SO4^2-, CI^- and total Fe) and pollution factors transportation situation in the coal rock were simulated by soil column experiment under the conditions of mine water leaching and main water leaching (similar to rainwater leaching), and the water-rock interaction mechanism was discussed during mine water infiltration through saturated coal rock by application of principle of mass conservation, based on physical properties of coal rock, as well as monitored chemical composition. The results show that, compared with the clear water leaching process, trends of change in pollutant concentrations presented different characteristics in the mine water leaching process. Groundwater is contaminated by the water rock interactions such as migration & accumulation, adsorption & transformation, dissolution & desorption and ion exchange during the mine water permeation. The experiments also suggest that at first dissolution rate of some kinds of dissoluble salts is high, but it decreases with leaching time, even to zero during both the mine water leaching and main water leaching.展开更多
To reveal the impact of mining on bacterial ecology around mining area,bacterial community and geochemical characteristics about Dabaoshan Mine(Guangdong Province,China)were studied.By amplified ribosomal DNA restrict...To reveal the impact of mining on bacterial ecology around mining area,bacterial community and geochemical characteristics about Dabaoshan Mine(Guangdong Province,China)were studied.By amplified ribosomal DNA restriction analysis and phylogenetic analysis,it is found that mining pollution greatly impacts the bacterial ecology and makes the habitat type of polluted environments close to acid mine drainage(AMD)ecology.The polluted environment is acidified so greatly that neutrophil and alkaliphilic microbes are massively dead and decomposed.It provided organic matters that can make Acidiphilium sp.rapidly grow and become the most bacterial species in this niche.Furthermore,Acidithiobacillus ferrooxidans and Leptospirillum sp.are also present in this niche.The amount of Leptospirillum sp.is far more than that of Acidithiobacillus ferrooxidans,which indicates that the concentration of toxic ions is very high.The conclusions of biogeochemical analysis and microbiological monitor are identical. Moreover,because the growth of Acidithiobacillus ferrooxidans and Leptospirillum sp.depends on ferrous iron or inorganic redox sulfur compounds which can be supplied by continual AMD,their presence indicates that AMD still flows into the site.And the area is closer to the outfalls of AMD,their biomasses would be more.So the distinction of their biomasses among different areas can help us to find the effluent route of AMD.展开更多
Acid mine drainage (AMD) that releases highly acidic, sulfate and metals-rich drainage is a serious environmental problem in coal mining areas in China. In order to study the effect of using loess for preventing AMD...Acid mine drainage (AMD) that releases highly acidic, sulfate and metals-rich drainage is a serious environmental problem in coal mining areas in China. In order to study the effect of using loess for preventing AMD and controlling heavy metals contamination from coal waste, the column leaching tests were conducted. The results come from experiment data analyses show that the loess can effectively immobilize cadmium, copper, iron, lead and zinc in AMD from coal waste, increase pH value, and decrease Eh, EC, and 8024- concentrations of AMD from coal waste. The oxidation of sulfide in coal waste is prevented by addition of the loess, which favors the generation and adsorption of the alkalinity, the decrease of the population of Thiobacillusferrooxidans, the heavy metals immobilization by precipitation of sulfide and carbonate through biological sul- fate reduction inside the column, and the halt of the oxidation process of sulfide through iron coating on the surface of sulfide in coal waste. The loess can effectively prevent AMD and heavy metals contamination from coal waste in in-situ treatment systems.展开更多
Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality...Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality and watercourses due to the erosion of contaminated soils for absence of vegetative cover. High concentrations of toxic elements, organic contaminants, acidic soils, and harsh climatic conditions have made it difficult to re-establish vegetation and produce crops there. Recently, a significant body of work has focussed on the suitability and potentiality of biochar as a soil remediation tool that increases seed emergence, soil and crop productivity, above ground biomass, and vegetation cover on mine tailings, waste rock piles, and industrial and sewage waste- contaminated soils by increasing soil nutrients and water-holding capacity, amelioration of soil acidity, and stimulation of microbial diversity and functions. This review addresses: i) the functional properties of biochar, and microbial cycling of nutrients in soil; ii) bioremediation, especially phytoremediation of mine railings, industrial waste, sewage sludge, and contaminated soil using biochar; iii) impact of biochar on reduction of acid production, acid mine drainage treatment, and geochemical dynamics in mine railings; and iv) treatment of metal and organic contaminants in soils using biochar, and restoration of degraded land.展开更多
基金the National Natural Science Foundation of China(50434020,50374042)Science & Technology Found of Liaoning Province(20022155)Specialized Research Fund for the Doctoral Program of Higher Education(20040147003)
文摘In order to understand the mechanism and regularity of the groundwater contamination from mine water of abandoned mines, experiments were conducted on an abandoned coal mine in Fuxin, a representative city with lots of mine water in northeast China. The groundwater pollution from different contaminants of coal-mining voids (total hardness, SO4^2-, CI^- and total Fe) and pollution factors transportation situation in the coal rock were simulated by soil column experiment under the conditions of mine water leaching and main water leaching (similar to rainwater leaching), and the water-rock interaction mechanism was discussed during mine water infiltration through saturated coal rock by application of principle of mass conservation, based on physical properties of coal rock, as well as monitored chemical composition. The results show that, compared with the clear water leaching process, trends of change in pollutant concentrations presented different characteristics in the mine water leaching process. Groundwater is contaminated by the water rock interactions such as migration & accumulation, adsorption & transformation, dissolution & desorption and ion exchange during the mine water permeation. The experiments also suggest that at first dissolution rate of some kinds of dissoluble salts is high, but it decreases with leaching time, even to zero during both the mine water leaching and main water leaching.
基金Project(50621063)supported by the Science Fund for Creative Research Groups of ChinaProject(2004CB619201)supported by the Major State Basic Research Development Program of China
文摘To reveal the impact of mining on bacterial ecology around mining area,bacterial community and geochemical characteristics about Dabaoshan Mine(Guangdong Province,China)were studied.By amplified ribosomal DNA restriction analysis and phylogenetic analysis,it is found that mining pollution greatly impacts the bacterial ecology and makes the habitat type of polluted environments close to acid mine drainage(AMD)ecology.The polluted environment is acidified so greatly that neutrophil and alkaliphilic microbes are massively dead and decomposed.It provided organic matters that can make Acidiphilium sp.rapidly grow and become the most bacterial species in this niche.Furthermore,Acidithiobacillus ferrooxidans and Leptospirillum sp.are also present in this niche.The amount of Leptospirillum sp.is far more than that of Acidithiobacillus ferrooxidans,which indicates that the concentration of toxic ions is very high.The conclusions of biogeochemical analysis and microbiological monitor are identical. Moreover,because the growth of Acidithiobacillus ferrooxidans and Leptospirillum sp.depends on ferrous iron or inorganic redox sulfur compounds which can be supplied by continual AMD,their presence indicates that AMD still flows into the site.And the area is closer to the outfalls of AMD,their biomasses would be more.So the distinction of their biomasses among different areas can help us to find the effluent route of AMD.
基金Supported by the-National Natural Science Foundation of China (30671448) the Science and Technology Pillar Program of Hebei Province 12220802D)
文摘Acid mine drainage (AMD) that releases highly acidic, sulfate and metals-rich drainage is a serious environmental problem in coal mining areas in China. In order to study the effect of using loess for preventing AMD and controlling heavy metals contamination from coal waste, the column leaching tests were conducted. The results come from experiment data analyses show that the loess can effectively immobilize cadmium, copper, iron, lead and zinc in AMD from coal waste, increase pH value, and decrease Eh, EC, and 8024- concentrations of AMD from coal waste. The oxidation of sulfide in coal waste is prevented by addition of the loess, which favors the generation and adsorption of the alkalinity, the decrease of the population of Thiobacillusferrooxidans, the heavy metals immobilization by precipitation of sulfide and carbonate through biological sul- fate reduction inside the column, and the halt of the oxidation process of sulfide through iron coating on the surface of sulfide in coal waste. The loess can effectively prevent AMD and heavy metals contamination from coal waste in in-situ treatment systems.
文摘Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality and watercourses due to the erosion of contaminated soils for absence of vegetative cover. High concentrations of toxic elements, organic contaminants, acidic soils, and harsh climatic conditions have made it difficult to re-establish vegetation and produce crops there. Recently, a significant body of work has focussed on the suitability and potentiality of biochar as a soil remediation tool that increases seed emergence, soil and crop productivity, above ground biomass, and vegetation cover on mine tailings, waste rock piles, and industrial and sewage waste- contaminated soils by increasing soil nutrients and water-holding capacity, amelioration of soil acidity, and stimulation of microbial diversity and functions. This review addresses: i) the functional properties of biochar, and microbial cycling of nutrients in soil; ii) bioremediation, especially phytoremediation of mine railings, industrial waste, sewage sludge, and contaminated soil using biochar; iii) impact of biochar on reduction of acid production, acid mine drainage treatment, and geochemical dynamics in mine railings; and iv) treatment of metal and organic contaminants in soils using biochar, and restoration of degraded land.