The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteri...The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteristics of displacement fields and plastic zones of the orebody were simulated in three different excavation cases, including the case of excavation artificial inducted roadway in the orebody, the case of horizontal or vertical excavation direction and the case of the upward or downward excavation order. The simulation results indicate that the plastic zone and displacement field of surrounding rock around the inducted roadway are continuously increasing with the increase of the exposure time after digging an artificial inducted roadway in the orebody. Thus the raw rock ore becomes easier to be fragmented, which provides advantageous conditions for roadheader to cut high stress hard-rock. It is worthy noting that there is a large difference in effective utilization of deep ground pressure between horizontal and vertical excavation directions. The later can produce larger deformation and fracture zone than the former on the rock mass around the deduced roadway, which means that the later may utilize the high ground pressure more effectively to break hard-rock. And the obtained results also show that upward excavation order is more helpful for ground pressure to break rock than downward excavation order.展开更多
Innovations of mining technologies were proposed by beneficial utilizations of unfavorable factors such as high geostress,high geotemperature and high mining depth to achieve green mining as mining depth increases ine...Innovations of mining technologies were proposed by beneficial utilizations of unfavorable factors such as high geostress,high geotemperature and high mining depth to achieve green mining as mining depth increases inevitably.Cuttability of deep hard rock was investigated by experimental and regressed analyses to find the reasonable stress adjustment method to improve non-explosive mechanized fragmentation for hard ore-rock.A non-explosive mechanized and intellectualized mining method was proposed to continuously and precisely exploit phosphate underground,which promoted the high-recovery,low-waste and high-efficiency exploitation of phosphate with recovery rate over 90%,dilution rate near 5%and cutting efficiency about 107.7 t/h.A circular economy model and the backfill system were proposed to conduct resource utilizations of solid waste,by which the utilization amount of waste increased year after year.In 2018,the utilization amounts of phosphogypsum,yellow phosphorus slag and waste rock increased to 1853.6×10^3 t/a,291.1×10^3 t/a and 1493.8×10^3 t/a,respectively.展开更多
Through rock mechanics test, similar simulation experiment, borehole photographic observation of rock fissure, numerical simulation calculation of plastic zone distribution and deformation monitoring of rock mass duri...Through rock mechanics test, similar simulation experiment, borehole photographic observation of rock fissure, numerical simulation calculation of plastic zone distribution and deformation monitoring of rock mass during undersea mining, the fractal evolution mechanisms of rock fracture in undersea metallic deposits of Sanshandao Gold Mine were studied by fractal theory. The experimental researches on granite mechanics test in undersea deposit indicate that with the increase of load, the granite deformation energy and the fractal dimension of acoustic emission(FDAE) increase gradually. However, after reaching the peak stress of specimen, the fractal dimensions of acoustic emission(FDAEs) decrease and the granite specimen fails. Therefore, the fractal dimension evolution of rock failure can be divided into four stages, which are fissure inoculation stage, fissure growth stage, fissure expansion stage and fracture instability stage, respectively. By calculating and analyzing the damage photographs of rock specimens in Sanshandao Gold Mine, the fractal dimension of rock fissure is 1.4514, which is close to the average value of FDAE during granite destruction, i.e., 1.4693. Similar simulation experiments of undersea mining show that with the excavation proceeding, the FDAE in rock stratum increases gradually, and when the thickness of the isolation roof is less than 40 m, the FDAE begins to decrease, and meanwhile the sign of water inrush emerges. The numerical simulation researches on the plastic zone distribution of undersea mining in Sanshandao Gold Mine indicate that the fractal dimension of plastic zone(FDPZ) where the failure characteristics occur is 1.4598, close to the result of similar simulation experiment of 1.4364, which shows the sign of water inrush. Meanwhile, the thickness of the isolation roof for undersea mining should be more than 40 m, which is consistent with the results of similar simulation experiment. In Sanshandao Gold Mine, the rock fissures in undersea mining were observed by borehole photography and the rock mass deformation was monitored by multi-point displacement meters, and at the same time the fractal dimensions of strata borehole fissure distribution and energy release ratio(ERR) of rock mass were calculated by fractal principle, which are 1.2328 and 1.2685, respectively. The results demonstrate that rock deformation and fissure propagation are both in the second stage of fissure growth, and have not reached the fourth stage of fracture instability. Therefore, the conclusion can be obtained that the undersea mining in Sanshandao Gold Mine is safe at present.展开更多
Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that re...Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.展开更多
Coal mining under buildings certainly causes surface movement and deformation, therefore, it brings about deformation even fracture for buildings. It is an important task to evaluate correcly the buildings’ damage gr...Coal mining under buildings certainly causes surface movement and deformation, therefore, it brings about deformation even fracture for buildings. It is an important task to evaluate correcly the buildings’ damage grabe caused by coal mining. Fuzzy comprehensive evaluation,considering some factors of buildings’ fracture, has been applied to analyze the masonry structure buildings’ damage grade affer coal mining in this paper. It provides a scientific basis for buildings’reidercement before mining and maintenance or compensation after mining.展开更多
Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint ...Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint effect of cur- vature deformation and horizontal deformation on buildings. It points out that for buildings over the coal pillar, it is ad- visable to soften the intermediate ground of buildings when they are affected by mining. For buildings over the goaf, it is preferable to soften the ground at both ends of buildings. In order to enhance the ability of a building to resist tensile deformation, the key measure is to reinforce the bottom foundation of the building. In addition, the concept of “angle of break of building” is proposed. It is because of this angle that the protecting coal pillar is left, which is a better solution than prevailing solutions The findings provide a more scientific basis for mining under buildings.展开更多
Coal pillar design has historically assigned a factor of safety(Fo S) or stability factor(SF) according to their estimated strength and the assumed overburden load acting on them. Acceptable Fo S values have been assi...Coal pillar design has historically assigned a factor of safety(Fo S) or stability factor(SF) according to their estimated strength and the assumed overburden load acting on them. Acceptable Fo S values have been assigned based on past mining experience or a statistical link between Fo S and probability of failure(Po F). Pillar width-to-height(w/h) ratio has long been established as having a material influence on both pillar strength and its potential failure mode. However, there has been significant disagreement on using both factor of safety(Fo S) and w/h as part of pillar system stability criterion, as compared to using Fo S in isolation. This paper will argue that there are valid technical reasons to bring w/h ratio into system stability criteria(other than its influence on pillar strength), as it is related to the post-failure stiffness of the pillar, as measured in situ, and its interaction with overburden stiffness. When overburden stiffness is also brought into pillar system stability considerations, two issues emerge. The first is the width-todepth(W/D) ratio of the panel and whether it is sub-critical or super-critical from a surface subsidence perspective. The second relates to a re-evaluation of pillar Fo S based on whether the pillar is in an elastic or non-elastic(i.e., post-yield) state in its as-designed condition, as this is relevant to maintaining overburden stiffness at the highest possible level. The significance of the model is the potential to maximise both reserve recovery and mining efficiencies without any discernible increase in geotechnical risk, particularly in thick seams and higher depth of cover mining situations. At a time when mining economics are, at best, marginal, removing potentially unnecessary design conservatism is of interest to all mine operators and is an important topic for discussion amongst the geotechnical community.展开更多
A non-blasting mechanized mining experiment was carried out with a high-frequency impact hammer,and the daily mining performance was recorded to explore the applicability of the high-frequency impact hammer in deep ha...A non-blasting mechanized mining experiment was carried out with a high-frequency impact hammer,and the daily mining performance was recorded to explore the applicability of the high-frequency impact hammer in deep hard rock mines.Before the field application,the scope of the excavation damage zone was monitored,and rock samples were obtained from the ore body to be mined to carry out a series of laboratory experiments.Field application results show that the overall excavation efficiency reaches 50.6 t/h,and the efficiency of pillar excavation after excavating stress relief slot reaches 158.2 t/h.The results indicate that the non-blasting mechanized mining using high-frequency impact hammer has a good application in deep hard rock mines,and the stress relief slot is conducive to mechanical excavation.In addition,the high-frequency impact hammer also exhibits the advantages of high utilization rate of labor hours,small lumpiness of spalling ore,little dust,and little excavation damage.Finally,according to the field application and laboratory experiment results,a non-blasting mechanized mining method for hard rock mines based on high-frequency impact hammer is proposed.展开更多
Drilling and blasting play vital roles in opencast mining. These operations not only affect the cost of production directly but as well and significantly, the overall operational costs. This research was carried out t...Drilling and blasting play vital roles in opencast mining. These operations not only affect the cost of production directly but as well and significantly, the overall operational costs. This research was carried out to find a possible way of optimizing the drilling and blasting operations in an open pit mine of Somair (Société des Mines de l’Air), in the Niger Republic. In order to optimize the drilling operation, the time taken by two drilling machines to accomplish the same task was analyzed statistically. The result indicates that the Down the Hole Hammer Drilling Rig (DMNo406) is more efficient than the Drill Master (DM405). The relative unit consumption of two explosives (Explus and Nitram 9), when used under the same operating conditions, were also considered and the results indicate Explus to be more economical per unit consumption with a range of 0.15 g/t–0.183 g/t, when compared with Nitram 9 with a unit consumption range of 0.19 g/t-0.24 g/t in the study area.展开更多
The model of catastrophic destabilization of tunnel under rock slipping in fault zone based on catastrophic theory and the potential function of fault movement were pre- sented.On the basis of the results above,throug...The model of catastrophic destabilization of tunnel under rock slipping in fault zone based on catastrophic theory and the potential function of fault movement were pre- sented.On the basis of the results above,through Taylor series expansion of the equation of equilibrium surface,its standard form was obtained.Analysis show that catastrophic destabilization of tunnel will occur only when stiffness ratio between elastic sector and strain weakening sector of soft rocks was larger than or equal to 1.On the other hand, sliding behavior and evolution path of fault were directly affected by exogenous process, and it was a major extraneous factor which leads to catastrophic destabilization of tunnel. In the condition of system catastrophe could be generated,if external forces vary from smaller to larger,firstly,fault sticks or creeps,and secondly,when external force equal to or larger than critical value,fault turns to slip suddenly.Inverse,if external forces vary from larger to smaller,fault smoothly slips firstly,when external force equal to or smaller than critical value,and fault turns to stick or creep suddenly.展开更多
Voids, which have not been liquidated and associated with shallow mining excavations, pose a serious threat of potential formation of sinkholes. This threat is connected with the loss of stability of voids that had be...Voids, which have not been liquidated and associated with shallow mining excavations, pose a serious threat of potential formation of sinkholes. This threat is connected with the loss of stability of voids that had been formed as a result of mining operations in the deeper strata. Taking into account the impact of lower coal seams mining on shallow excavations and based on the example of a region that had been intensely exploited, this paper proposes a methodology for analysing the stability of shallow mine voids in the rock mass. Deformations in the excavation region were calculated by using FLAC2D computer pro- gram and assigning the Coulomb-Mohr model to the rock mass. Based on the numerical analysis, this paper evaluated the stability of the void in the event of a roof support fall. The results indicate the like- lihood of void formation. Based on the Budryk-Knotbe theory, the deformations of rock mass and sand- stone strata in the roof of the void, which had been caused by mining exploitation in consecutive years, were calculated. The results of numerical calculations and analyses were compared with the limit defor- mations values of sandstone in tension. It is concluded that the exploitations cause the void to break down. The proposed method can forecast the discontinuous deformations threats in the areas that have undergone shallow undermining exploitation and the areas of underground urban.展开更多
With the increase of mining depth,the effect of rock burst on coal mining is becoming more and more obvious and the rock burst mechanism becomes more and more complicated.Scholars from many countries had put forward d...With the increase of mining depth,the effect of rock burst on coal mining is becoming more and more obvious and the rock burst mechanism becomes more and more complicated.Scholars from many countries had put forward different mechanisms,but no one gave a reasonable explanation to the mechanism of rock burst.In this paper,based on the energy theories,we studied the energy limit equilibrium(ELE) of coal mine rock burst The coal seam with rock burst is divided into energy limit equilibrium zone(ELEZ)(A) and elastic zone(B);we also determined the position where the rock burst occurs,including the roof and floor of coal seams;in addition,we derived the limit width of ELEZ and the mathematic relationship between the limit width and occurrence mechanism of rock burst:the energy difference function(EDF),w(x) = w_j - w_p,because first-order derivative w'(x),is less than 0.So EDF is a monotonically decreasing function.The graph of the energy difference function was also determined, through which we analysed the occurrence mechanism of rock burst.展开更多
The results of experimentaI studies about the characteristics of broken rock expansion and reconsolidation were briefly introduced in this paper, and the surface subsidence coefficient under critical mining conditions...The results of experimentaI studies about the characteristics of broken rock expansion and reconsolidation were briefly introduced in this paper, and the surface subsidence coefficient under critical mining conditions was also analysed based on the principle of expansion and reconsolidation of the broken rock strata, a equation to calculate the corresponding surface subsidence was finally produced. This calculation method can be used to calculate more accurately the convergence quantity of consolidated rocks in the broken zone of the working face. In addition, case analyses by using the introduced calculation method were conducted and satisfactory results were obtained.展开更多
In order to understand the properties of impact toughness of coal at different impact speeds,and the change of impact toughness of lump coal to joint directivity of lump coal,a series of impact tests were conducted on...In order to understand the properties of impact toughness of coal at different impact speeds,and the change of impact toughness of lump coal to joint directivity of lump coal,a series of impact tests were conducted on Beijing Da'anshan Lump Coal at different impact speeds and in different impact direction.Through analyzing the test result,it is shown that the change of testing samples is similar when impact is exerted on the vertical bedding and the parallel bedding when the impulse is less than 20 N.s,and the difference increases with the impulse increasing when the impulse is more than 20 N·s.At the same time,the expanding energy of fracture in samples increases with its expanding speed,and the expanding energy of fracture has close relation with the impact direction of the tested samples.And the difference of impact toughness of lump coal produced by different im- pact direction increase with the impact speed.The fracture surface of lump coal when im- pact is exerted on the vertical bedding is smooth and the broken block number is fewer; but the fracture surface of lump coal when impact is exerted on the parallel bedding isn't smooth and the broken block number is more,which inflects impact toughness of coal is sensitive to some deficiency.展开更多
An underground coal mine located in New South Wales has a target coal seam located 160-180 m deep directly below a 16-20 m thick conglomerate unit that has been associated with significant periodic weighting events on...An underground coal mine located in New South Wales has a target coal seam located 160-180 m deep directly below a 16-20 m thick conglomerate unit that has been associated with significant periodic weighting events on the Iongwall face. As part of the investigations to better understand the causes of periodic weighting at the mine. inclinometers capable of measuring horizontal shear movements through the full section of the overburden strata were installed ahead of mining at two locations approximately 1 km apart above the centre of two iongwall panels. These inclinometers were monitored as the longwall approached each site. This paper presents the details of the installation, the results of the inclinometer monitoring at both sites, and the insights that these measurements provide for overburden behaviour about longwall panels. Horizontal shear movements were observed to develop on shear horizons that correlate closely across the two sites suggesting a mechanism that is consistent across a large area of the mine. Shear movements were observed to develop on a single horizon near the top of the conglomerate strata that was mobilised almost immediately after initial formation of the longwall goal at a distance of 425 m ahead of the longwall face.展开更多
基金Projects (50934006, 10872218) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by the National Basic Research Program of China
文摘The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteristics of displacement fields and plastic zones of the orebody were simulated in three different excavation cases, including the case of excavation artificial inducted roadway in the orebody, the case of horizontal or vertical excavation direction and the case of the upward or downward excavation order. The simulation results indicate that the plastic zone and displacement field of surrounding rock around the inducted roadway are continuously increasing with the increase of the exposure time after digging an artificial inducted roadway in the orebody. Thus the raw rock ore becomes easier to be fragmented, which provides advantageous conditions for roadheader to cut high stress hard-rock. It is worthy noting that there is a large difference in effective utilization of deep ground pressure between horizontal and vertical excavation directions. The later can produce larger deformation and fracture zone than the former on the rock mass around the deduced roadway, which means that the later may utilize the high ground pressure more effectively to break hard-rock. And the obtained results also show that upward excavation order is more helpful for ground pressure to break rock than downward excavation order.
基金Projects(41630642,51904335,51904333)supported by the National Natural Science Foundation of China
文摘Innovations of mining technologies were proposed by beneficial utilizations of unfavorable factors such as high geostress,high geotemperature and high mining depth to achieve green mining as mining depth increases inevitably.Cuttability of deep hard rock was investigated by experimental and regressed analyses to find the reasonable stress adjustment method to improve non-explosive mechanized fragmentation for hard ore-rock.A non-explosive mechanized and intellectualized mining method was proposed to continuously and precisely exploit phosphate underground,which promoted the high-recovery,low-waste and high-efficiency exploitation of phosphate with recovery rate over 90%,dilution rate near 5%and cutting efficiency about 107.7 t/h.A circular economy model and the backfill system were proposed to conduct resource utilizations of solid waste,by which the utilization amount of waste increased year after year.In 2018,the utilization amounts of phosphogypsum,yellow phosphorus slag and waste rock increased to 1853.6×10^3 t/a,291.1×10^3 t/a and 1493.8×10^3 t/a,respectively.
基金Project(2019sdzy05)supported by the Major Scientific and Technological Innovation Project of Shandong Province,ChinaProjects(51674288,51974359)supported by the National Natural Science Foundation of China。
文摘Through rock mechanics test, similar simulation experiment, borehole photographic observation of rock fissure, numerical simulation calculation of plastic zone distribution and deformation monitoring of rock mass during undersea mining, the fractal evolution mechanisms of rock fracture in undersea metallic deposits of Sanshandao Gold Mine were studied by fractal theory. The experimental researches on granite mechanics test in undersea deposit indicate that with the increase of load, the granite deformation energy and the fractal dimension of acoustic emission(FDAE) increase gradually. However, after reaching the peak stress of specimen, the fractal dimensions of acoustic emission(FDAEs) decrease and the granite specimen fails. Therefore, the fractal dimension evolution of rock failure can be divided into four stages, which are fissure inoculation stage, fissure growth stage, fissure expansion stage and fracture instability stage, respectively. By calculating and analyzing the damage photographs of rock specimens in Sanshandao Gold Mine, the fractal dimension of rock fissure is 1.4514, which is close to the average value of FDAE during granite destruction, i.e., 1.4693. Similar simulation experiments of undersea mining show that with the excavation proceeding, the FDAE in rock stratum increases gradually, and when the thickness of the isolation roof is less than 40 m, the FDAE begins to decrease, and meanwhile the sign of water inrush emerges. The numerical simulation researches on the plastic zone distribution of undersea mining in Sanshandao Gold Mine indicate that the fractal dimension of plastic zone(FDPZ) where the failure characteristics occur is 1.4598, close to the result of similar simulation experiment of 1.4364, which shows the sign of water inrush. Meanwhile, the thickness of the isolation roof for undersea mining should be more than 40 m, which is consistent with the results of similar simulation experiment. In Sanshandao Gold Mine, the rock fissures in undersea mining were observed by borehole photography and the rock mass deformation was monitored by multi-point displacement meters, and at the same time the fractal dimensions of strata borehole fissure distribution and energy release ratio(ERR) of rock mass were calculated by fractal principle, which are 1.2328 and 1.2685, respectively. The results demonstrate that rock deformation and fissure propagation are both in the second stage of fissure growth, and have not reached the fourth stage of fracture instability. Therefore, the conclusion can be obtained that the undersea mining in Sanshandao Gold Mine is safe at present.
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Based on the principle of Mahalanobis distance discriminant analysis (DDA) theory, a stability classification model for mine-lane surrounding rock was established, including six indexes of discriminant factors that reflect the engineering quality of surrounding rock: lane depth below surface, span of lane, ratio of directly top layer thickness to coal thickness, uniaxial comprehensive strength of surrounding rock, development degree coefficient of surrounding rock joint and range of broken surrounding rock zone. A DDA model was obtained through training 15 practical measuring samples. The re-substitution method was introduced to verify the stability of DDA model and the ratio of mis-discrimination is zero. The DDA model was used to discriminate 3 new samples and the results are identical with actual rock kind. Compared with the artificial neural network method and support vector mechanic method, the results show that this model has high prediction accuracy and can be used in practical engineering.
文摘Coal mining under buildings certainly causes surface movement and deformation, therefore, it brings about deformation even fracture for buildings. It is an important task to evaluate correcly the buildings’ damage grabe caused by coal mining. Fuzzy comprehensive evaluation,considering some factors of buildings’ fracture, has been applied to analyze the masonry structure buildings’ damage grade affer coal mining in this paper. It provides a scientific basis for buildings’reidercement before mining and maintenance or compensation after mining.
基金Project 50474064 supported by the National Natural Science Foundation of China
文摘Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint effect of cur- vature deformation and horizontal deformation on buildings. It points out that for buildings over the coal pillar, it is ad- visable to soften the intermediate ground of buildings when they are affected by mining. For buildings over the goaf, it is preferable to soften the ground at both ends of buildings. In order to enhance the ability of a building to resist tensile deformation, the key measure is to reinforce the bottom foundation of the building. In addition, the concept of “angle of break of building” is proposed. It is because of this angle that the protecting coal pillar is left, which is a better solution than prevailing solutions The findings provide a more scientific basis for mining under buildings.
文摘Coal pillar design has historically assigned a factor of safety(Fo S) or stability factor(SF) according to their estimated strength and the assumed overburden load acting on them. Acceptable Fo S values have been assigned based on past mining experience or a statistical link between Fo S and probability of failure(Po F). Pillar width-to-height(w/h) ratio has long been established as having a material influence on both pillar strength and its potential failure mode. However, there has been significant disagreement on using both factor of safety(Fo S) and w/h as part of pillar system stability criterion, as compared to using Fo S in isolation. This paper will argue that there are valid technical reasons to bring w/h ratio into system stability criteria(other than its influence on pillar strength), as it is related to the post-failure stiffness of the pillar, as measured in situ, and its interaction with overburden stiffness. When overburden stiffness is also brought into pillar system stability considerations, two issues emerge. The first is the width-todepth(W/D) ratio of the panel and whether it is sub-critical or super-critical from a surface subsidence perspective. The second relates to a re-evaluation of pillar Fo S based on whether the pillar is in an elastic or non-elastic(i.e., post-yield) state in its as-designed condition, as this is relevant to maintaining overburden stiffness at the highest possible level. The significance of the model is the potential to maximise both reserve recovery and mining efficiencies without any discernible increase in geotechnical risk, particularly in thick seams and higher depth of cover mining situations. At a time when mining economics are, at best, marginal, removing potentially unnecessary design conservatism is of interest to all mine operators and is an important topic for discussion amongst the geotechnical community.
基金supported by the National Natural Science Foundation of China (Nos. 52174099, 51904333)the Natural Science Foundation of Hunan Province, China (No. 2021JJ30842)
文摘A non-blasting mechanized mining experiment was carried out with a high-frequency impact hammer,and the daily mining performance was recorded to explore the applicability of the high-frequency impact hammer in deep hard rock mines.Before the field application,the scope of the excavation damage zone was monitored,and rock samples were obtained from the ore body to be mined to carry out a series of laboratory experiments.Field application results show that the overall excavation efficiency reaches 50.6 t/h,and the efficiency of pillar excavation after excavating stress relief slot reaches 158.2 t/h.The results indicate that the non-blasting mechanized mining using high-frequency impact hammer has a good application in deep hard rock mines,and the stress relief slot is conducive to mechanical excavation.In addition,the high-frequency impact hammer also exhibits the advantages of high utilization rate of labor hours,small lumpiness of spalling ore,little dust,and little excavation damage.Finally,according to the field application and laboratory experiment results,a non-blasting mechanized mining method for hard rock mines based on high-frequency impact hammer is proposed.
文摘Drilling and blasting play vital roles in opencast mining. These operations not only affect the cost of production directly but as well and significantly, the overall operational costs. This research was carried out to find a possible way of optimizing the drilling and blasting operations in an open pit mine of Somair (Société des Mines de l’Air), in the Niger Republic. In order to optimize the drilling operation, the time taken by two drilling machines to accomplish the same task was analyzed statistically. The result indicates that the Down the Hole Hammer Drilling Rig (DMNo406) is more efficient than the Drill Master (DM405). The relative unit consumption of two explosives (Explus and Nitram 9), when used under the same operating conditions, were also considered and the results indicate Explus to be more economical per unit consumption with a range of 0.15 g/t–0.183 g/t, when compared with Nitram 9 with a unit consumption range of 0.19 g/t-0.24 g/t in the study area.
基金the National Natural Science Foundation of China(50678079)
文摘The model of catastrophic destabilization of tunnel under rock slipping in fault zone based on catastrophic theory and the potential function of fault movement were pre- sented.On the basis of the results above,through Taylor series expansion of the equation of equilibrium surface,its standard form was obtained.Analysis show that catastrophic destabilization of tunnel will occur only when stiffness ratio between elastic sector and strain weakening sector of soft rocks was larger than or equal to 1.On the other hand, sliding behavior and evolution path of fault were directly affected by exogenous process, and it was a major extraneous factor which leads to catastrophic destabilization of tunnel. In the condition of system catastrophe could be generated,if external forces vary from smaller to larger,firstly,fault sticks or creeps,and secondly,when external force equal to or larger than critical value,fault turns to slip suddenly.Inverse,if external forces vary from larger to smaller,fault smoothly slips firstly,when external force equal to or smaller than critical value,and fault turns to stick or creep suddenly.
文摘Voids, which have not been liquidated and associated with shallow mining excavations, pose a serious threat of potential formation of sinkholes. This threat is connected with the loss of stability of voids that had been formed as a result of mining operations in the deeper strata. Taking into account the impact of lower coal seams mining on shallow excavations and based on the example of a region that had been intensely exploited, this paper proposes a methodology for analysing the stability of shallow mine voids in the rock mass. Deformations in the excavation region were calculated by using FLAC2D computer pro- gram and assigning the Coulomb-Mohr model to the rock mass. Based on the numerical analysis, this paper evaluated the stability of the void in the event of a roof support fall. The results indicate the like- lihood of void formation. Based on the Budryk-Knotbe theory, the deformations of rock mass and sand- stone strata in the roof of the void, which had been caused by mining exploitation in consecutive years, were calculated. The results of numerical calculations and analyses were compared with the limit defor- mations values of sandstone in tension. It is concluded that the exploitations cause the void to break down. The proposed method can forecast the discontinuous deformations threats in the areas that have undergone shallow undermining exploitation and the areas of underground urban.
基金Financial support for this project,provided by the Key Basic Research Program of China(No.2006CB202200)the National Major Project of Ministry of Education(No.304005)the Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT0656)
文摘With the increase of mining depth,the effect of rock burst on coal mining is becoming more and more obvious and the rock burst mechanism becomes more and more complicated.Scholars from many countries had put forward different mechanisms,but no one gave a reasonable explanation to the mechanism of rock burst.In this paper,based on the energy theories,we studied the energy limit equilibrium(ELE) of coal mine rock burst The coal seam with rock burst is divided into energy limit equilibrium zone(ELEZ)(A) and elastic zone(B);we also determined the position where the rock burst occurs,including the roof and floor of coal seams;in addition,we derived the limit width of ELEZ and the mathematic relationship between the limit width and occurrence mechanism of rock burst:the energy difference function(EDF),w(x) = w_j - w_p,because first-order derivative w'(x),is less than 0.So EDF is a monotonically decreasing function.The graph of the energy difference function was also determined, through which we analysed the occurrence mechanism of rock burst.
文摘The results of experimentaI studies about the characteristics of broken rock expansion and reconsolidation were briefly introduced in this paper, and the surface subsidence coefficient under critical mining conditions was also analysed based on the principle of expansion and reconsolidation of the broken rock strata, a equation to calculate the corresponding surface subsidence was finally produced. This calculation method can be used to calculate more accurately the convergence quantity of consolidated rocks in the broken zone of the working face. In addition, case analyses by using the introduced calculation method were conducted and satisfactory results were obtained.
基金the National Natural Science Foundation of China(50374042)
文摘In order to understand the properties of impact toughness of coal at different impact speeds,and the change of impact toughness of lump coal to joint directivity of lump coal,a series of impact tests were conducted on Beijing Da'anshan Lump Coal at different impact speeds and in different impact direction.Through analyzing the test result,it is shown that the change of testing samples is similar when impact is exerted on the vertical bedding and the parallel bedding when the impulse is less than 20 N.s,and the difference increases with the impulse increasing when the impulse is more than 20 N·s.At the same time,the expanding energy of fracture in samples increases with its expanding speed,and the expanding energy of fracture has close relation with the impact direction of the tested samples.And the difference of impact toughness of lump coal produced by different im- pact direction increase with the impact speed.The fracture surface of lump coal when im- pact is exerted on the vertical bedding is smooth and the broken block number is fewer; but the fracture surface of lump coal when impact is exerted on the parallel bedding isn't smooth and the broken block number is more,which inflects impact toughness of coal is sensitive to some deficiency.
文摘An underground coal mine located in New South Wales has a target coal seam located 160-180 m deep directly below a 16-20 m thick conglomerate unit that has been associated with significant periodic weighting events on the Iongwall face. As part of the investigations to better understand the causes of periodic weighting at the mine. inclinometers capable of measuring horizontal shear movements through the full section of the overburden strata were installed ahead of mining at two locations approximately 1 km apart above the centre of two iongwall panels. These inclinometers were monitored as the longwall approached each site. This paper presents the details of the installation, the results of the inclinometer monitoring at both sites, and the insights that these measurements provide for overburden behaviour about longwall panels. Horizontal shear movements were observed to develop on shear horizons that correlate closely across the two sites suggesting a mechanism that is consistent across a large area of the mine. Shear movements were observed to develop on a single horizon near the top of the conglomerate strata that was mobilised almost immediately after initial formation of the longwall goal at a distance of 425 m ahead of the longwall face.