It has been proven that longwall faces can be moved safely and efficiently. However,abutment pressures and poor ground control conditions can halt operations and be hazardous to coal miners. Recently at a mine in Sout...It has been proven that longwall faces can be moved safely and efficiently. However,abutment pressures and poor ground control conditions can halt operations and be hazardous to coal miners. Recently at a mine in Southwestern Pennsylvania,roof material collapsed above shields that created two large voids and caused major challenges for shield recovery. A unique,engineering solution was developed that utilized a modified concrete material to fill the voids,creating stability in the affected area. The many phases of this project included the construction phase,void pumping,cutting out,and bolting of the concrete material. This project eliminated the hazards associated with bolting the recovery face and removing shields in adverse conditions,making it possible for the mine operator to safely complete the longwall move.展开更多
Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controlle...Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controller design, it cannot achieve satisfactory effects in controlling complex grinding processes in the presence of strong disturbances and large uncertainties. In this paper, an improved disturbance observer (DOB) based MPC advanced feedback control is proposed to control the multivariable grinding operation. The improved DOB is based on the optimal achievable H 2 performance and can deal with disturbance observation for the nonminimum-phase delay systems. In this DOB-MPC advanced feedback control, the higher-level optimizer computes the optimal operation points by maximize the profit function and passes them to the MPC level. The MPC acts as a presetting controller and is employed to generate proper pre-setpoint for the lower-level basic feedback control system. The DOB acts as a compensator and improves the operation performance by dynamically compensating the setpoints for the basic control system according to the observed various disturbances and plant uncertainties. Several simulations are performed to demonstrate the proposed control method for grinding process operation.展开更多
Air DTH hammer has been successfully applied in minor-caliber solid mineral exploration,water-well drilling and other drilling areas. In order to expand the applications of the technology,the authors further studied t...Air DTH hammer has been successfully applied in minor-caliber solid mineral exploration,water-well drilling and other drilling areas. In order to expand the applications of the technology,the authors further studied the principle and analyzed the mechanism of reverse circulation drilling technique with air DTH hammer to get the perfect assembles of equipments by optimizing working parameters. No parameter seemed more important than the air volume because it could maintain the working performance stability. The minimum air volume is related to the parameters such as depth and pressure,which was calculated under the actual conditions. It was solved for the air injection flow tables of the air DTH Hammer working at the different pressures. According to the data tables,operators could adjust the air volume to meet the demand on this technique,which had a realistic guiding significance. So it could build up a set of systematic and complete hi-technique.展开更多
Numerical simulation-FLAC^(3D) and equivalent material simulation were carried out to analyze the damaged patterns and lows, distribution of plastic width of face, and surrounding rock of FMTC during the advance of wo...Numerical simulation-FLAC^(3D) and equivalent material simulation were carried out to analyze the damaged patterns and lows, distribution of plastic width of face, and surrounding rock of FMTC during the advance of work face with different thick coal seams based on engineering geology and exploitation technology of 1151(3) fully mechanized top-coal caving (FMTC) face in Xieqiao Colliery.The results show that there is damage,and the destruction characteristics of surrounding rock and coal mass are different obviously in asymmetric exploitation layout.The damaged zone in surrounding rock and the coal of the return airway is larger than that of the intake airway.Moreover, the retained coal pillars are all damaged by tension and shear fracture, and plastic zone in coal mass in the dip direction ahead of Face is nonuniform.There are large damage zones in roof and floor strata, surrounding rock, and coal of return and intake airways near work face.The damaged zone in the upper part of Face is larger than that in middle and lower parts.The fruits of this paper are of guiding significance for engineering practices, such as support design and choice, roadway supporting and maintaining, rock pressure control of FMTC face, etc.展开更多
文摘It has been proven that longwall faces can be moved safely and efficiently. However,abutment pressures and poor ground control conditions can halt operations and be hazardous to coal miners. Recently at a mine in Southwestern Pennsylvania,roof material collapsed above shields that created two large voids and caused major challenges for shield recovery. A unique,engineering solution was developed that utilized a modified concrete material to fill the voids,creating stability in the affected area. The many phases of this project included the construction phase,void pumping,cutting out,and bolting of the concrete material. This project eliminated the hazards associated with bolting the recovery face and removing shields in adverse conditions,making it possible for the mine operator to safely complete the longwall move.
基金Supported by the National Natural Science Foundation of China (61104084, 61290323)the Guangdong Education University-Industry Cooperation Projects (2010B090400410)
文摘Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controller design, it cannot achieve satisfactory effects in controlling complex grinding processes in the presence of strong disturbances and large uncertainties. In this paper, an improved disturbance observer (DOB) based MPC advanced feedback control is proposed to control the multivariable grinding operation. The improved DOB is based on the optimal achievable H 2 performance and can deal with disturbance observation for the nonminimum-phase delay systems. In this DOB-MPC advanced feedback control, the higher-level optimizer computes the optimal operation points by maximize the profit function and passes them to the MPC level. The MPC acts as a presetting controller and is employed to generate proper pre-setpoint for the lower-level basic feedback control system. The DOB acts as a compensator and improves the operation performance by dynamically compensating the setpoints for the basic control system according to the observed various disturbances and plant uncertainties. Several simulations are performed to demonstrate the proposed control method for grinding process operation.
基金supported by the project of the feasibility study on air reverse circulation drilling system,research foundation for out standingteachers,Jilin University(No.2006220100003435)
文摘Air DTH hammer has been successfully applied in minor-caliber solid mineral exploration,water-well drilling and other drilling areas. In order to expand the applications of the technology,the authors further studied the principle and analyzed the mechanism of reverse circulation drilling technique with air DTH hammer to get the perfect assembles of equipments by optimizing working parameters. No parameter seemed more important than the air volume because it could maintain the working performance stability. The minimum air volume is related to the parameters such as depth and pressure,which was calculated under the actual conditions. It was solved for the air injection flow tables of the air DTH Hammer working at the different pressures. According to the data tables,operators could adjust the air volume to meet the demand on this technique,which had a realistic guiding significance. So it could build up a set of systematic and complete hi-technique.
基金Supported by the National Basic Research Program (2010CB226806)the National Science and Technology Supporting Program Key Item(2008BAB36B01)the Funded Project of Anhui University of Science and Technology Academic Outstanding Innovation Team
文摘Numerical simulation-FLAC^(3D) and equivalent material simulation were carried out to analyze the damaged patterns and lows, distribution of plastic width of face, and surrounding rock of FMTC during the advance of work face with different thick coal seams based on engineering geology and exploitation technology of 1151(3) fully mechanized top-coal caving (FMTC) face in Xieqiao Colliery.The results show that there is damage,and the destruction characteristics of surrounding rock and coal mass are different obviously in asymmetric exploitation layout.The damaged zone in surrounding rock and the coal of the return airway is larger than that of the intake airway.Moreover, the retained coal pillars are all damaged by tension and shear fracture, and plastic zone in coal mass in the dip direction ahead of Face is nonuniform.There are large damage zones in roof and floor strata, surrounding rock, and coal of return and intake airways near work face.The damaged zone in the upper part of Face is larger than that in middle and lower parts.The fruits of this paper are of guiding significance for engineering practices, such as support design and choice, roadway supporting and maintaining, rock pressure control of FMTC face, etc.