According to the actual conditions in Sanshandao Gold Mine, the cancelling ore pillars mining method was researched. Firstly, a series of tests for the physical and mechanical characteristics of rock mass were carried...According to the actual conditions in Sanshandao Gold Mine, the cancelling ore pillars mining method was researched. Firstly, a series of tests for the physical and mechanical characteristics of rock mass were carried out and a quality classification system of rock mass applied in coastal metal deposit was established. Secondly, the reasonable demarcation depth of cancelling ore pillars was simulated using the finite element method, and the simulation results show that the ore pillars can be cancelled below the level of-555 m. Thirdly, a novel layer-backfill mining method of room-pillar alternation was designed to reduce the disturbance and settlement of terrain in mining area. Engineering practice shows that the new mining method enhanced the mining output and relieved rock disturbance. Furthermore, the settlement of the roof strata was small and no disaster occurred. The new mining technology effectively controlled the deformation of the terrain, indicating that the mining of the large-scale gold coastal deposit in Sanshandao Gold Mine was achieved safely, efficiently, and with a low loss rate.展开更多
Risk quantification in grade is critical for mine design and planning.Grade uncertainty is assessed using multiple grade realizations,from geostatistical conditional simulations,which are effective to evaluate local o...Risk quantification in grade is critical for mine design and planning.Grade uncertainty is assessed using multiple grade realizations,from geostatistical conditional simulations,which are effective to evaluate local or global uncertainty by honouring spatial correlation structures.The sequential Gaussian conditional simulation was used to assess uncertainty of grade estimates and illustrate simulated models in Sivas gold deposit,Turkey.In situ variability and risk quantification of the gold grade were assessed by probabilistic approach based on the sequential Gaussian simulations to yield a series of conditional maps characterized by equally probable spatial distribution of the gold grade for the study area.The simulation results were validated by a number of tests such as descriptive statistics,histogram,variogram and contour map reproductions.The case study demonstrates the efficiency of the method in assessing risk associated with geological and engineering variable such as the gold grade variability and distribution.The simulated models can be incorporated into exploration,exploitation and scheduling of the gold deposit.展开更多
基金Projects(2013BAB02B03,2012BAB08B00)supported by the National Science and Technology Support Program of ChinaProject(51074177)supported by the Joint Funding of National Natural Science Foundation and Shanghai Baosteel Group CorporationProjects(51274254,51322403)supported by the National Natural Science Foundation of China
文摘According to the actual conditions in Sanshandao Gold Mine, the cancelling ore pillars mining method was researched. Firstly, a series of tests for the physical and mechanical characteristics of rock mass were carried out and a quality classification system of rock mass applied in coastal metal deposit was established. Secondly, the reasonable demarcation depth of cancelling ore pillars was simulated using the finite element method, and the simulation results show that the ore pillars can be cancelled below the level of-555 m. Thirdly, a novel layer-backfill mining method of room-pillar alternation was designed to reduce the disturbance and settlement of terrain in mining area. Engineering practice shows that the new mining method enhanced the mining output and relieved rock disturbance. Furthermore, the settlement of the roof strata was small and no disaster occurred. The new mining technology effectively controlled the deformation of the terrain, indicating that the mining of the large-scale gold coastal deposit in Sanshandao Gold Mine was achieved safely, efficiently, and with a low loss rate.
文摘Risk quantification in grade is critical for mine design and planning.Grade uncertainty is assessed using multiple grade realizations,from geostatistical conditional simulations,which are effective to evaluate local or global uncertainty by honouring spatial correlation structures.The sequential Gaussian conditional simulation was used to assess uncertainty of grade estimates and illustrate simulated models in Sivas gold deposit,Turkey.In situ variability and risk quantification of the gold grade were assessed by probabilistic approach based on the sequential Gaussian simulations to yield a series of conditional maps characterized by equally probable spatial distribution of the gold grade for the study area.The simulation results were validated by a number of tests such as descriptive statistics,histogram,variogram and contour map reproductions.The case study demonstrates the efficiency of the method in assessing risk associated with geological and engineering variable such as the gold grade variability and distribution.The simulated models can be incorporated into exploration,exploitation and scheduling of the gold deposit.