Many minerals in nature have self-purification capacity to hold and stabilize deleterious contaminants into their lattice structures,which can be used for treatment of heavy metals-bearing contaminants. Hydrotalcite L...Many minerals in nature have self-purification capacity to hold and stabilize deleterious contaminants into their lattice structures,which can be used for treatment of heavy metals-bearing contaminants. Hydrotalcite Layer Double Hydroxide (LDH),tobermorite Calcium Silicate Hydrate (CSH) and apatite are ubiquitous minerals in nature,having higher geochemical stability and potential for binding and stabilizing heavy metals. Based on the elucidation of crystal structure property and self-purification principles of the three minerals above,this article discussed how to design the self-purification system of heavy metal-bearing contaminants.展开更多
The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone betwe...The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.展开更多
Multiferroic properties of short period perovskite type manganite superlattice((R_1MnO_3)n/(R_2MnO_3)n(n=1,2,3)) are considered within the framework of classical Heisenberg model using Monte Carlo simulation. Our resu...Multiferroic properties of short period perovskite type manganite superlattice((R_1MnO_3)n/(R_2MnO_3)n(n=1,2,3)) are considered within the framework of classical Heisenberg model using Monte Carlo simulation. Our result revealed the interesting behaviors in Mn spins structure in superlattice. Apart from simple plane spin cycloid structure which is shown in all manganites including bulk, film, and superlattice here in low temperature, a non-coplanar spiral spin structure is exhibited in a certain temperature range when n equals 1, 2 or 3. Specific heat, spin-helicity vector,spin correlation function, spin-helicity correlation function, and spin configuration are calculated to confirm this noncoplanar spiral spin structure. These results are associated with the competition among exchange interaction, magnetic anisotropy, and Dzyaloshinskii–Moriya interaction.展开更多
文摘Many minerals in nature have self-purification capacity to hold and stabilize deleterious contaminants into their lattice structures,which can be used for treatment of heavy metals-bearing contaminants. Hydrotalcite Layer Double Hydroxide (LDH),tobermorite Calcium Silicate Hydrate (CSH) and apatite are ubiquitous minerals in nature,having higher geochemical stability and potential for binding and stabilizing heavy metals. Based on the elucidation of crystal structure property and self-purification principles of the three minerals above,this article discussed how to design the self-purification system of heavy metal-bearing contaminants.
基金Project(2018YSJS14)supported by the Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education,China
文摘The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.
基金Supported by the National Natural Science Foundation of China(NSFC) under Grant No.11447136
文摘Multiferroic properties of short period perovskite type manganite superlattice((R_1MnO_3)n/(R_2MnO_3)n(n=1,2,3)) are considered within the framework of classical Heisenberg model using Monte Carlo simulation. Our result revealed the interesting behaviors in Mn spins structure in superlattice. Apart from simple plane spin cycloid structure which is shown in all manganites including bulk, film, and superlattice here in low temperature, a non-coplanar spiral spin structure is exhibited in a certain temperature range when n equals 1, 2 or 3. Specific heat, spin-helicity vector,spin correlation function, spin-helicity correlation function, and spin configuration are calculated to confirm this noncoplanar spiral spin structure. These results are associated with the competition among exchange interaction, magnetic anisotropy, and Dzyaloshinskii–Moriya interaction.