Ag/LaCoO3 perovskite catalysts for soot combustion were prepared by the impregnation method.The structure and physicochemical properties of the catalysts were characterized using X-ray diffraction,N2 adsorption-desorp...Ag/LaCoO3 perovskite catalysts for soot combustion were prepared by the impregnation method.The structure and physicochemical properties of the catalysts were characterized using X-ray diffraction,N2 adsorption-desorption,H2 temperature-programmed reduction,soot temperatureprogrammed reduction,and X-ray photoelectron spectroscopy.The catalytic activity of the catalysts for soot oxidation was tested by temperature-programmed oxidation in air and in a NOx atmosphere.Metallic Ag particles were the main Ag species.Part of the Ag migrated from the surface to the lattice of the LaCoO3 perovskite,to form La(1-x)AgxCoO3.This increased the amount of oxygen vacancies in the perovskite structure during thermal treatment.Compared with unmodified LaCoO3,the maximum soot oxidation rate temperature(Tp) decreased by 50-70 ℃ in air when LaCoO3 was partially modified by Ag,depending on the thermal treatment temperature.The Tp of the Ag/LaCoO3catalyst calcined at 400℃ in a NOx atmosphere decreased to about 140℃,compared with that of LaCoO3.Ag particles and oxygen vacancies in the catalysts contributed to their high catalytic activity for soot oxidation.The stable catalytic activity of the Ag/LaCoO3 catalyst calcined at 700℃ in a NOx atmosphere was related to its stable structure.展开更多
Two soils, one consisting of 1:1 clay minerals at pH 4.5 and the other containing 2:1 clay minerals at pH 7.0, were used to estimate the conversion of added NH+4 under different C/N ratios (glucose as the C source) an...Two soils, one consisting of 1:1 clay minerals at pH 4.5 and the other containing 2:1 clay minerals at pH 7.0, were used to estimate the conversion of added NH+4 under different C/N ratios (glucose as the C source) and the addition of potassium. Under lower C/N ratios (0:1 and 5:1), a large part of the added NH4+ in the acid soil was held in the forms of either exchangeable or water soluble NH4+ for a relatively long time and under higher C/N ratio (50:1), a large amount of the added NH4+ was directly immobilized by microorganisms. In the second soil containing appreciable 2:1 type clay minerals a large part of the added NH+4 at first quickly entered the interlayer of the minerals under both lower and higher C/N ratios. In second condition, however, owing to microbial assimilation stimulated by glucose the newly fixed NH4+c ould be completely released in further incubation because of a large concentration gradient between external NH4+ and fixed NH4+ in the mineral interlayer caused by heterotrophic microorganisms, which imply the fixed NH4+ to be available to plants. The results also showed that if a large amount of K+ with carbon source together was added to soil, the higher K+ concentration of soil solution could impede the release of fixed NH4+ , even if there was a lot of carbon source.展开更多
Effets of conventional and optimized water and nitrogenmanagements on spinach (Spinacia oleracea L.) growth and soil mineralN (N_min) residues were compared in an open field experiment in whichwater balance method and...Effets of conventional and optimized water and nitrogenmanagements on spinach (Spinacia oleracea L.) growth and soil mineralN (N_min) residues were compared in an open field experiment in whichwater balance method and N recommendation with the KNS-system wereincluded. It was shown that the conventional water treatment(seasonal irrigated amount: 175 mm) reduced spinach growth comparedto the water balance treatments (seasonal irrigated amount: 80 and 85mm) at he same N supply level due to N loss through leaching causedby excessive water supply.展开更多
With the present understanding that decomposing straw may not onlyaffect soil properties, but pos- sibly greenhouse gas emissions aswell, focus among environmental researchers has gradually expanded toinclude understa...With the present understanding that decomposing straw may not onlyaffect soil properties, but pos- sibly greenhouse gas emissions aswell, focus among environmental researchers has gradually expanded toinclude understanding of decomposition rate and stability of straw ofdifferent plants in different soils under different managementconditions. Against such a background, a short-term (60 days)greenhouse simulation experiment was carried out to study the effectsof straw placement, external mineral N source and tillage on strawdecomposition of maize and cotton in two contrasting soils, a redsoil (Ferrasol) and a black soil (Acrisol).展开更多
Two soils with relatively high (Soil 1) and low (Soil 2) ammonium fixation capacities were used in thisstudy to extalne the effect of ammonium fixation on the determination of N mineralised from soil ndcrobialbiomass....Two soils with relatively high (Soil 1) and low (Soil 2) ammonium fixation capacities were used in thisstudy to extalne the effect of ammonium fixation on the determination of N mineralised from soil ndcrobialbiomass. organism suspellsioll was quantitatively introduced to Soil 1 at various rates. Both fumigation-incubation (FI) and fumigation-ext raction (FE ) met hods were used to t reat t he soil. The amount of ffeedNH4+-N increased with increasing rate of organism-N addition. A close correlation was found between theamoun of fixed aznmonium and the rate of organism-N addition. The net increso of fixed NH4+-N wereequivalent to 38% and 12% of the added organism-N for FI and FE treatments, respectively in this specificsoil. To provide isotopic evidence, 15N-labelled organism-N was added to Soils 1 and 2 at 121.4 mg N kg-1.In FI treatment, 22 and 3 mg N kg-1 of labelled N were found in the fraction of fixed NH4+-N in Soils 1 and2 respectively; while in FE treatment, 9 mg N kg-1 of labelled N was found in the fraction of fixed NH4+-Nin Soil 1 only. There was no labelled N in the fraction of fixed NH4+-N in Soil 2. In all of the unfumigated(check) soils, there was little or no labelled N in the fixed fractions, probably because the organism-N addedwas easily mineralized and nitrified. A mean of 0.64 for KN value, the fraction of N ndneralized in the killedmicrobial biomass, was obtained with inclusion of the net increase of fixed NH4+-N. The corresponding valuecalculated with exclusion of the net increase of fixed NH4+-N was 0.46. It was concluded that ammniumfixation was a problem in determination of KN, particularly for soils with a high ammonium fixation capacity.Results also showed that microbial biomass N measurement by FE method was less affected by ammoniumprocess than that by FI method.展开更多
Mineralizable N and organic N components in different layers (0~15, 15~30,30~45, 45~60, 60~80 and 80~100 cm) of six soils with different fertilities sampled from YongshouCounty, Shaanxi Province, China, were det...Mineralizable N and organic N components in different layers (0~15, 15~30,30~45, 45~60, 60~80 and 80~100 cm) of six soils with different fertilities sampled from YongshouCounty, Shaanxi Province, China, were determined by the aerobic incubation method and the Bremnerprocedure, respectively. Correlation, multiple regression and path analyses were performed to studythe relation of mineralizable N to organic N components. Results of correlation and regressionanalyses showed that the amounts of the N mineralized were parallel to, and significantly correlatedwith, the total acid hydrolyzable N, but was not so with the acid-insoluble N. Of the hydrolyzableN, the amino acid N and the ammonia N had a highly consistent significant correlation with themineralized N, and their partial regression coefficients were significant in the regressionequations, showing their importance in contribution to the mineralizable N. The amino sugar N, onthe other hand, had a relatively high correlation with the mineralized N, but their partialregression coefficients were not significant in the regression equations. In contrast, thehydrolyzable unknown N had no such relations. Path analysis further indicated that the amino acid Nand ammonia N made great direct contributions to the mineralized N, but the contributions of theamino sugar N were very low. These strongly suggested that the mineralized N in the soils tested wasmainly from the hydrolyzable N, particularly the amino acid N and ammonia N which are the majorsources for its production.展开更多
Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field exper...Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field experiments were conducted for two growing seasons at eight sites, in Huimin County, Shandong Province, from 2001 to 2003. The optimum N rate for maximum grain yield was inversely related to the initial soil mineral N content (Nmin) in the top 90 cm of the soil profile before sowing. There was no yield response to the applied N at the three sites with high initial soil mineral N levels (average 212 kg N ha-1). The average optimum N rate was 96 kg N ha-1 for the five sites with low initial soil Nmin (average 155 kg N ha-1) before sowing. Residual nitrate N in the top 90 cm of the soil profile after harvest increased with increasing fertilizer N application rate. The apparent N losses during the wheat-growing season also increased with increasing N application rate. The average apparent N losses with the optimum N rates were less than 15 kg N ha-1, whereas the farmers' conventional N application rate resulted in losses of more than 100 kg N ha-1. Therefore, optimizing N use for winter wheat considerably reduced N losses to the environment without compromising crop yields.展开更多
Process control is an effective approach to reduce the NOx emission from sintering flue gas.The effects of different materials adhered on coke breeze on NOx emission characteristics and sintering performance were stud...Process control is an effective approach to reduce the NOx emission from sintering flue gas.The effects of different materials adhered on coke breeze on NOx emission characteristics and sintering performance were studied.Results showed that the coke breeze adhered with the mixture of CaO and Fe2O3 or calcium ferrite significantly lowers the NOx emission concentration and conversion ratio of fuel-N to NOx.Pretreating the coke with the mixture of lime slurry and iron ore fines helped to improve the granulation effect,and optimize the carbon distribution in granules.When the mass ratio of coke breeze,quick lime,water and iron ore fines was 2:1:1:1,the average NOx emission concentration was decreased from 220 mg/m3 to 166 mg/m3,and the conversion ratio of fuel-N was reduced from 54.2%to 40.9%.展开更多
Plants show different growth responses to N sources supplied with either NH4^+ or NO3^-. The uptake of different N sources also affects the rhizosphere pH and therefore the bioavallability of soil phosphorus, particu...Plants show different growth responses to N sources supplied with either NH4^+ or NO3^-. The uptake of different N sources also affects the rhizosphere pH and therefore the bioavallability of soil phosphorus, particularly in alkaline soils. The plant growth, P uptake, and P availability in the rhizosphere of oat (Arena nuda L.) grown in hydroponics and in soil culture were investigated under supply with sole NH4^+-N, sole NO3-N, or a combination. Sole NO^- -fed oat plants accumulated more biomass than sole NH4^+ -fed ones. The highest biomass accumulation was observed when N was supplied with both NH^+ -N and NO3^- -N. Growth of the plant root increased with the proportion of NO3^- in the cultural medium. Better root growth and higher root/shoot ratio were consistently observed in NO3^- fed plants. However, root vigor was the highest when N was supplied with NO3^- +NH4^+. NH4^+ supply reduced the rhizosphere pH but did not affect P uptake by plants grown in soils with CaHPO4 added as P source. No P deficiency was observed, and plant P concentrations were generally above 2 g kg^-1. P uptake was increased when N was supplied partly or solely as NO3^--N, similarly as biomass accumulation. The results suggested that oat was an NO3-preferring plant, and NO3^- -N was essential for plant growth and the maintenance of root absorption capacity. N supply with NH4^+ -N did not improve P nutrition, which was most likely due to the absence of P deficiency.展开更多
The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in ...The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in the soils ranged from 75.9 to 301.0 μg Cg-1 with an average of 206.1 μg C g-1, accounting for 1.36%~6.24% of the total soil organic C with an average of 3.07%, and the SMBN contents from 0.51 to 68.40 μg N g-1 with an average of 29.4 μg N g-1, accounting for 0.20%~5.65% of the total N in the soils with an average of 3.36%. A close relationship was found between SMBC and SMBN, and they both were positively correlated with total organic C, total N, NaOH hydrolizable N and mineralizable N. These results confirmed that soil microbial biomass had a comparative role in nutrient cycles of soils.展开更多
Based on the dielectric continuum model and Loudon's uniaxial crystal model, the properties of the quasi. confined (QC) optical phonon dispersions and the electron-QC phonons coupling functions in an asymmetric wur...Based on the dielectric continuum model and Loudon's uniaxial crystal model, the properties of the quasi. confined (QC) optical phonon dispersions and the electron-QC phonons coupling functions in an asymmetric wurtzite quantum well (QW) are deduced via the method of electrostatic .potential expanding. The present theoretical scheme can naturally reduce to the results in symmetric wurtzite QW once a set of symmetric structural parameters are chosen. Numerical calculations on an asymmetric AlN/GaN/AIo,15 Gao.85N Wurtzite Q W are performed. A detailed comparison with the symmetric wurtzite QW was also performed. The results show that the structural asymmetry of wurtzite QW changes greatly the dispersion frequencies and the electrostatic potential distributions of the QC optical phonon modes.展开更多
Nitrogen forms of humic substances from a subalpine meadow soil, a latentic red soil and a weathered coal and the effect of acid hydrolysis on N structures of soil humic substances were studied by using 15N cross-pola...Nitrogen forms of humic substances from a subalpine meadow soil, a latentic red soil and a weathered coal and the effect of acid hydrolysis on N structures of soil humic substances were studied by using 15N cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy. Of the detectable 15N-signal intensity in the spectra of soil humic substances 71%-79% may be attributed to amide groups, 10%-18% to aromatic/aliphatic amines and 6%~11% to indole- and pyrrole-like N. Whereas in the spectrum of the fulvic acid from weathered coal 46%, at least, of the total 15N-signal intensity might be assigned to pyrrole-like N, 14% to aromatic/aliphatic ammes, and the remaining intensities could not be assigned with certainty. Data on nonhydrolyzable residue of protein-sugar mixture and a 15N-labelled soil fulvic acid confirm the formation of nonhydrolyzable heterocyclic N during acid hydrolysis. Project (No. 39790100) supported by the National Natural Science Foundation of China.展开更多
Quantifying trends in soil microbial biomass carbon (SMBC) undercontrasting management conditions is important in understanding thedynamics of soil organic matter (SOM) in soils and in ensuring theirsustainable use. A...Quantifying trends in soil microbial biomass carbon (SMBC) undercontrasting management conditions is important in understanding thedynamics of soil organic matter (SOM) in soils and in ensuring theirsustainable use. Against such a background, a 60-day greenhousesimulation experiment was carried out to study the effects of strawplacement, mineral N source, and tillage on SMBC dynamics in twocontrasting soils, red sol (Ferrasol) and black soil (Acrisol). Thetreatments included straw addition + buried (T1); straw addition +mineral N (T2); and straw addition + tillage (T3).展开更多
Reversible oxygen reaction plays a crucial role in rechargeable battery systems,but it is limited by the slow reaction kinetics.Herein,the ionic modulation of cobalt pentlandite coupled with nitrogen‐doped bowl‐like...Reversible oxygen reaction plays a crucial role in rechargeable battery systems,but it is limited by the slow reaction kinetics.Herein,the ionic modulation of cobalt pentlandite coupled with nitrogen‐doped bowl‐like hollow carbon sphere is well designed on octahedral and tetrahedral sites.The robust FexCo9−xS8‐NHCS‐V with iron replacing at the octahedron possesses prolonged metal sulfur bond and exhibits excellent bifunctional electrocatalytic performance towards oxygen reduction reaction(ORR,E_(1/2)=0.80 V vs.RHE)and excellent oxygen evolution reaction(OER,E_(j=10)=1.53 V vs.RHE)in 0.1 mol/L KOH.Accordingly,a rechargeable Zn‐air battery of Fe_(x)Co_(9−x)S_(8)‐NHCS‐V cathode endows high energy efficiency(102 mW cm^(−2)),and a microbial fuel cell achieves a high‐power density(791±42 mW m^(−2)),outperforming the benchmark Pt/C catalyst.展开更多
Root exudates,microorganism colonization and soil aggregates together form the rhizosheath,a special cylinder of micro-ecosystem adhering to the root surface.To study how the rhizosheath affects soil structure and nut...Root exudates,microorganism colonization and soil aggregates together form the rhizosheath,a special cylinder of micro-ecosystem adhering to the root surface.To study how the rhizosheath affects soil structure and nutrient distribution,we analyzed the impact of maize rhizosheath on soil particle size and nutrient availability in pot and field experiments.The results showed that there was a significant size decrease of soil particles in the rhizosheath.Meanwhile,the soil mineral nitrogen in the rhizosheath was significantly higher than that in the rhizosphere or bulk soil at tasseling and maturity stages of maize.The contents of Fe and Mn were also differentially altered in the rhizosheath.Rhizosheath development,indicated by a dry weight ratio of rhizosheath soil to the root,was relatively independent of root development during the whole experimental period.The formation of maize rhizosheath contributed to the modulation of soil particle size and nutrient availability.The subtle local changes of soil physical and chemical properties may have profound influence on soil formation,rhizospheric ecosystem initiation,and mineral nutrient mobilization over the long history of plant evolution and domestication.展开更多
Soil drying and wetting impose significant influences on soil nitrogen (N) dynamics and microbial communities. However, effects of drying-wetting cycles, while common in vegetable soils, especially under greenhouse co...Soil drying and wetting impose significant influences on soil nitrogen (N) dynamics and microbial communities. However, effects of drying-wetting cycles, while common in vegetable soils, especially under greenhouse conditions, have not been well studied. In this study, two greenhouse vegetable soils, which were collected from Xinji (XJ) and Hangzhou (HZ), China, were maintained at 30% and 75% water-holding capacity (WHC), or five cycles of 75% WHC followed by a 7-day dry-down to 30% WHC (DW). Soil inorganic N content increased during incubation. Net N mineralization (Nmin), microbial activity, and microbial biomass were significantly higher in the DW treatment than in the 30% and 75% WHC treatments. The higher water content (75% WHC) treatment had higher Nmin, microbial activity, and microbial biomass than the lower water content treatment (30% WHC). Multivariate analyses of community-level physiological profile (CLPP) and phospholipid fatty acid (PLFA) data indicated that soil moisture regime had a significant effect on soil microbial community substrate utilization pattern and microbial community composition. The significant positive correlation between Nmin and microbial substrate utilization or PLFAs suggested that soil N mineralization had a close relationship with microbial community.展开更多
In nutrient-limited alpine meadows,nitrogen(N) mineralization is prior to soil microbial immobilization;therefore,increased mineral N supply would be most likely immobilized by soil microbes due to nutrient shortage i...In nutrient-limited alpine meadows,nitrogen(N) mineralization is prior to soil microbial immobilization;therefore,increased mineral N supply would be most likely immobilized by soil microbes due to nutrient shortage in alpine soils.In addition,low temperature in alpine meadows might be one of the primary factors limiting soil organic matter decomposition and thus N mineralization.A laboratory incubation experiment was performed using an alpine meadow soil from the Tibetan Plateau.Two levels of NH4NO3(N) or glucose(C) were added,with a blank without addition of C or N as the control,before incubation at 5,15,or 25 ℃ for 28 d.CO2 efflux was measured during the 28-d incubation,and the mineral N was measured at the beginning and end of the incubation,in order to test two hypotheses:1) net N mineralization is negatively correlated with CO2 efflux for the control and 2) the external labile N or C supply will shift the negative correlation to positive.The results showed a negative correlation between CO2 efflux and net N immobilization in the control.External inorganic N supply did not change the negative correlation.The external labile C supply shifted the linear correlation from negative to positive under the low C addition level.However,under the high C level,no correlation was found.These suggested that the correlation of CO2 efflux to net N mineralization strongly depend on soil labile C and C:N ratio regardless of temperatures.Further research should focus on the effects of the types and the amount of litter components on interactions of C and N during soil organic matter decomposition.展开更多
文摘Ag/LaCoO3 perovskite catalysts for soot combustion were prepared by the impregnation method.The structure and physicochemical properties of the catalysts were characterized using X-ray diffraction,N2 adsorption-desorption,H2 temperature-programmed reduction,soot temperatureprogrammed reduction,and X-ray photoelectron spectroscopy.The catalytic activity of the catalysts for soot oxidation was tested by temperature-programmed oxidation in air and in a NOx atmosphere.Metallic Ag particles were the main Ag species.Part of the Ag migrated from the surface to the lattice of the LaCoO3 perovskite,to form La(1-x)AgxCoO3.This increased the amount of oxygen vacancies in the perovskite structure during thermal treatment.Compared with unmodified LaCoO3,the maximum soot oxidation rate temperature(Tp) decreased by 50-70 ℃ in air when LaCoO3 was partially modified by Ag,depending on the thermal treatment temperature.The Tp of the Ag/LaCoO3catalyst calcined at 400℃ in a NOx atmosphere decreased to about 140℃,compared with that of LaCoO3.Ag particles and oxygen vacancies in the catalysts contributed to their high catalytic activity for soot oxidation.The stable catalytic activity of the Ag/LaCoO3 catalyst calcined at 700℃ in a NOx atmosphere was related to its stable structure.
基金the National Natural Science Foundation of China (No.39770427).
文摘Two soils, one consisting of 1:1 clay minerals at pH 4.5 and the other containing 2:1 clay minerals at pH 7.0, were used to estimate the conversion of added NH+4 under different C/N ratios (glucose as the C source) and the addition of potassium. Under lower C/N ratios (0:1 and 5:1), a large part of the added NH4+ in the acid soil was held in the forms of either exchangeable or water soluble NH4+ for a relatively long time and under higher C/N ratio (50:1), a large amount of the added NH4+ was directly immobilized by microorganisms. In the second soil containing appreciable 2:1 type clay minerals a large part of the added NH+4 at first quickly entered the interlayer of the minerals under both lower and higher C/N ratios. In second condition, however, owing to microbial assimilation stimulated by glucose the newly fixed NH4+c ould be completely released in further incubation because of a large concentration gradient between external NH4+ and fixed NH4+ in the mineral interlayer caused by heterotrophic microorganisms, which imply the fixed NH4+ to be available to plants. The results also showed that if a large amount of K+ with carbon source together was added to soil, the higher K+ concentration of soil solution could impede the release of fixed NH4+ , even if there was a lot of carbon source.
基金Natural Science Foundation of Beijing(No.6991004)Joint Lab between theInstitute of Soil Science, CAS, +1 种基金 Hong Kong Baptist University (No. 99122202) Federal Ministry of Education and Research, Germany.
文摘Effets of conventional and optimized water and nitrogenmanagements on spinach (Spinacia oleracea L.) growth and soil mineralN (N_min) residues were compared in an open field experiment in whichwater balance method and N recommendation with the KNS-system wereincluded. It was shown that the conventional water treatment(seasonal irrigated amount: 175 mm) reduced spinach growth comparedto the water balance treatments (seasonal irrigated amount: 80 and 85mm) at he same N supply level due to N loss through leaching causedby excessive water supply.
基金Project (No. G1999011809) supported by the National Key Basic Research Support Foundation (NKBRSF) of China.
文摘With the present understanding that decomposing straw may not onlyaffect soil properties, but pos- sibly greenhouse gas emissions aswell, focus among environmental researchers has gradually expanded toinclude understanding of decomposition rate and stability of straw ofdifferent plants in different soils under different managementconditions. Against such a background, a short-term (60 days)greenhouse simulation experiment was carried out to study the effectsof straw placement, external mineral N source and tillage on strawdecomposition of maize and cotton in two contrasting soils, a redsoil (Ferrasol) and a black soil (Acrisol).
文摘Two soils with relatively high (Soil 1) and low (Soil 2) ammonium fixation capacities were used in thisstudy to extalne the effect of ammonium fixation on the determination of N mineralised from soil ndcrobialbiomass. organism suspellsioll was quantitatively introduced to Soil 1 at various rates. Both fumigation-incubation (FI) and fumigation-ext raction (FE ) met hods were used to t reat t he soil. The amount of ffeedNH4+-N increased with increasing rate of organism-N addition. A close correlation was found between theamoun of fixed aznmonium and the rate of organism-N addition. The net increso of fixed NH4+-N wereequivalent to 38% and 12% of the added organism-N for FI and FE treatments, respectively in this specificsoil. To provide isotopic evidence, 15N-labelled organism-N was added to Soils 1 and 2 at 121.4 mg N kg-1.In FI treatment, 22 and 3 mg N kg-1 of labelled N were found in the fraction of fixed NH4+-N in Soils 1 and2 respectively; while in FE treatment, 9 mg N kg-1 of labelled N was found in the fraction of fixed NH4+-Nin Soil 1 only. There was no labelled N in the fraction of fixed NH4+-N in Soil 2. In all of the unfumigated(check) soils, there was little or no labelled N in the fixed fractions, probably because the organism-N addedwas easily mineralized and nitrified. A mean of 0.64 for KN value, the fraction of N ndneralized in the killedmicrobial biomass, was obtained with inclusion of the net increase of fixed NH4+-N. The corresponding valuecalculated with exclusion of the net increase of fixed NH4+-N was 0.46. It was concluded that ammniumfixation was a problem in determination of KN, particularly for soils with a high ammonium fixation capacity.Results also showed that microbial biomass N measurement by FE method was less affected by ammoniumprocess than that by FI method.
基金Project supported by the National Key Basic Research Support Foundation(NKBRSF)(No.G1999011707)and the National Natural Science Foundation of China(NFSC)(Nos.49890330,30230230 and 30070429).
文摘Mineralizable N and organic N components in different layers (0~15, 15~30,30~45, 45~60, 60~80 and 80~100 cm) of six soils with different fertilities sampled from YongshouCounty, Shaanxi Province, China, were determined by the aerobic incubation method and the Bremnerprocedure, respectively. Correlation, multiple regression and path analyses were performed to studythe relation of mineralizable N to organic N components. Results of correlation and regressionanalyses showed that the amounts of the N mineralized were parallel to, and significantly correlatedwith, the total acid hydrolyzable N, but was not so with the acid-insoluble N. Of the hydrolyzableN, the amino acid N and the ammonia N had a highly consistent significant correlation with themineralized N, and their partial regression coefficients were significant in the regressionequations, showing their importance in contribution to the mineralizable N. The amino sugar N, onthe other hand, had a relatively high correlation with the mineralized N, but their partialregression coefficients were not significant in the regression equations. In contrast, thehydrolyzable unknown N had no such relations. Path analysis further indicated that the amino acid Nand ammonia N made great direct contributions to the mineralized N, but the contributions of theamino sugar N were very low. These strongly suggested that the mineralized N in the soils tested wasmainly from the hydrolyzable N, particularly the amino acid N and ammonia N which are the majorsources for its production.
基金Project supported by the National Natural Science Foundation of China (Nos. 30390084 and 30270772)the Natural Science Foundation of Beijing (No. 6010001)
文摘Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field experiments were conducted for two growing seasons at eight sites, in Huimin County, Shandong Province, from 2001 to 2003. The optimum N rate for maximum grain yield was inversely related to the initial soil mineral N content (Nmin) in the top 90 cm of the soil profile before sowing. There was no yield response to the applied N at the three sites with high initial soil mineral N levels (average 212 kg N ha-1). The average optimum N rate was 96 kg N ha-1 for the five sites with low initial soil Nmin (average 155 kg N ha-1) before sowing. Residual nitrate N in the top 90 cm of the soil profile after harvest increased with increasing fertilizer N application rate. The apparent N losses during the wheat-growing season also increased with increasing N application rate. The average apparent N losses with the optimum N rates were less than 15 kg N ha-1, whereas the farmers' conventional N application rate resulted in losses of more than 100 kg N ha-1. Therefore, optimizing N use for winter wheat considerably reduced N losses to the environment without compromising crop yields.
基金Project(2017YFC0210302)supported by the National Key R&D Program of ChinaProjects(U1660206,U1760107)supported by the National Natural Science Foundation of China
文摘Process control is an effective approach to reduce the NOx emission from sintering flue gas.The effects of different materials adhered on coke breeze on NOx emission characteristics and sintering performance were studied.Results showed that the coke breeze adhered with the mixture of CaO and Fe2O3 or calcium ferrite significantly lowers the NOx emission concentration and conversion ratio of fuel-N to NOx.Pretreating the coke with the mixture of lime slurry and iron ore fines helped to improve the granulation effect,and optimize the carbon distribution in granules.When the mass ratio of coke breeze,quick lime,water and iron ore fines was 2:1:1:1,the average NOx emission concentration was decreased from 220 mg/m3 to 166 mg/m3,and the conversion ratio of fuel-N was reduced from 54.2%to 40.9%.
基金Project supported by the National Natural Science Foundation Council of China (No.30660086)the Natural Science Foundation of Inner Mongolia of China (No.200607010302)+2 种基金Hong Kong Research Grants Council (No.2465/05M)Hong Kong University Grants Committee (No.AOE/B-07/99)Hong Kong Baptist University Matching Research Fund.
文摘Plants show different growth responses to N sources supplied with either NH4^+ or NO3^-. The uptake of different N sources also affects the rhizosphere pH and therefore the bioavallability of soil phosphorus, particularly in alkaline soils. The plant growth, P uptake, and P availability in the rhizosphere of oat (Arena nuda L.) grown in hydroponics and in soil culture were investigated under supply with sole NH4^+-N, sole NO3-N, or a combination. Sole NO^- -fed oat plants accumulated more biomass than sole NH4^+ -fed ones. The highest biomass accumulation was observed when N was supplied with both NH^+ -N and NO3^- -N. Growth of the plant root increased with the proportion of NO3^- in the cultural medium. Better root growth and higher root/shoot ratio were consistently observed in NO3^- fed plants. However, root vigor was the highest when N was supplied with NO3^- +NH4^+. NH4^+ supply reduced the rhizosphere pH but did not affect P uptake by plants grown in soils with CaHPO4 added as P source. No P deficiency was observed, and plant P concentrations were generally above 2 g kg^-1. P uptake was increased when N was supplied partly or solely as NO3^--N, similarly as biomass accumulation. The results suggested that oat was an NO3-preferring plant, and NO3^- -N was essential for plant growth and the maintenance of root absorption capacity. N supply with NH4^+ -N did not improve P nutrition, which was most likely due to the absence of P deficiency.
文摘The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in the soils ranged from 75.9 to 301.0 μg Cg-1 with an average of 206.1 μg C g-1, accounting for 1.36%~6.24% of the total soil organic C with an average of 3.07%, and the SMBN contents from 0.51 to 68.40 μg N g-1 with an average of 29.4 μg N g-1, accounting for 0.20%~5.65% of the total N in the soils with an average of 3.36%. A close relationship was found between SMBC and SMBN, and they both were positively correlated with total organic C, total N, NaOH hydrolizable N and mineralizable N. These results confirmed that soil microbial biomass had a comparative role in nutrient cycles of soils.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 60276004 and 6939007,3, the Scientilic Research Foundation for the Returned 0overseas Chinese Scholars State Education Ministry of China
文摘Based on the dielectric continuum model and Loudon's uniaxial crystal model, the properties of the quasi. confined (QC) optical phonon dispersions and the electron-QC phonons coupling functions in an asymmetric wurtzite quantum well (QW) are deduced via the method of electrostatic .potential expanding. The present theoretical scheme can naturally reduce to the results in symmetric wurtzite QW once a set of symmetric structural parameters are chosen. Numerical calculations on an asymmetric AlN/GaN/AIo,15 Gao.85N Wurtzite Q W are performed. A detailed comparison with the symmetric wurtzite QW was also performed. The results show that the structural asymmetry of wurtzite QW changes greatly the dispersion frequencies and the electrostatic potential distributions of the QC optical phonon modes.
基金supported by the National Natural science Foundation of China.(No.39790100)
文摘Nitrogen forms of humic substances from a subalpine meadow soil, a latentic red soil and a weathered coal and the effect of acid hydrolysis on N structures of soil humic substances were studied by using 15N cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy. Of the detectable 15N-signal intensity in the spectra of soil humic substances 71%-79% may be attributed to amide groups, 10%-18% to aromatic/aliphatic amines and 6%~11% to indole- and pyrrole-like N. Whereas in the spectrum of the fulvic acid from weathered coal 46%, at least, of the total 15N-signal intensity might be assigned to pyrrole-like N, 14% to aromatic/aliphatic ammes, and the remaining intensities could not be assigned with certainty. Data on nonhydrolyzable residue of protein-sugar mixture and a 15N-labelled soil fulvic acid confirm the formation of nonhydrolyzable heterocyclic N during acid hydrolysis. Project (No. 39790100) supported by the National Natural Science Foundation of China.
基金Project (No. G1999011809) supported by the National Key Basic Research Support Foundation (NKBRSF) of China.
文摘Quantifying trends in soil microbial biomass carbon (SMBC) undercontrasting management conditions is important in understanding thedynamics of soil organic matter (SOM) in soils and in ensuring theirsustainable use. Against such a background, a 60-day greenhousesimulation experiment was carried out to study the effects of strawplacement, mineral N source, and tillage on SMBC dynamics in twocontrasting soils, red sol (Ferrasol) and black soil (Acrisol). Thetreatments included straw addition + buried (T1); straw addition +mineral N (T2); and straw addition + tillage (T3).
文摘Reversible oxygen reaction plays a crucial role in rechargeable battery systems,but it is limited by the slow reaction kinetics.Herein,the ionic modulation of cobalt pentlandite coupled with nitrogen‐doped bowl‐like hollow carbon sphere is well designed on octahedral and tetrahedral sites.The robust FexCo9−xS8‐NHCS‐V with iron replacing at the octahedron possesses prolonged metal sulfur bond and exhibits excellent bifunctional electrocatalytic performance towards oxygen reduction reaction(ORR,E_(1/2)=0.80 V vs.RHE)and excellent oxygen evolution reaction(OER,E_(j=10)=1.53 V vs.RHE)in 0.1 mol/L KOH.Accordingly,a rechargeable Zn‐air battery of Fe_(x)Co_(9−x)S_(8)‐NHCS‐V cathode endows high energy efficiency(102 mW cm^(−2)),and a microbial fuel cell achieves a high‐power density(791±42 mW m^(−2)),outperforming the benchmark Pt/C catalyst.
基金Supported by the National Natural Science Foundation of China (No. 30671237),the Innovative Group Grant of the National Natural Science Foundation of China (No. 30821003)the National Basic Research Program(973 Program) of China (No. 2007CB109302)
文摘Root exudates,microorganism colonization and soil aggregates together form the rhizosheath,a special cylinder of micro-ecosystem adhering to the root surface.To study how the rhizosheath affects soil structure and nutrient distribution,we analyzed the impact of maize rhizosheath on soil particle size and nutrient availability in pot and field experiments.The results showed that there was a significant size decrease of soil particles in the rhizosheath.Meanwhile,the soil mineral nitrogen in the rhizosheath was significantly higher than that in the rhizosphere or bulk soil at tasseling and maturity stages of maize.The contents of Fe and Mn were also differentially altered in the rhizosheath.Rhizosheath development,indicated by a dry weight ratio of rhizosheath soil to the root,was relatively independent of root development during the whole experimental period.The formation of maize rhizosheath contributed to the modulation of soil particle size and nutrient availability.The subtle local changes of soil physical and chemical properties may have profound influence on soil formation,rhizospheric ecosystem initiation,and mineral nutrient mobilization over the long history of plant evolution and domestication.
基金Supported by the State Key Laboratory of Soil and Sustainable Agriculture, Chinathe National Basic Research Program (973 Program) of China (No. 2007CB109305)+1 种基金the National Natural Science Foundation of China (Nos. 30971859 and 30370840)the International Plant Nutrition Institute (IPNI), USA
文摘Soil drying and wetting impose significant influences on soil nitrogen (N) dynamics and microbial communities. However, effects of drying-wetting cycles, while common in vegetable soils, especially under greenhouse conditions, have not been well studied. In this study, two greenhouse vegetable soils, which were collected from Xinji (XJ) and Hangzhou (HZ), China, were maintained at 30% and 75% water-holding capacity (WHC), or five cycles of 75% WHC followed by a 7-day dry-down to 30% WHC (DW). Soil inorganic N content increased during incubation. Net N mineralization (Nmin), microbial activity, and microbial biomass were significantly higher in the DW treatment than in the 30% and 75% WHC treatments. The higher water content (75% WHC) treatment had higher Nmin, microbial activity, and microbial biomass than the lower water content treatment (30% WHC). Multivariate analyses of community-level physiological profile (CLPP) and phospholipid fatty acid (PLFA) data indicated that soil moisture regime had a significant effect on soil microbial community substrate utilization pattern and microbial community composition. The significant positive correlation between Nmin and microbial substrate utilization or PLFAs suggested that soil N mineralization had a close relationship with microbial community.
基金Supported by the National Basic Research Program (973 Program) of China (Nos.2010CB951704 and 2010CB833502)the National Natural Science Foundation for Young Scientists of China (No.30600070)the West Light Joint Scholarship of the Chinese Academy of Sciences
文摘In nutrient-limited alpine meadows,nitrogen(N) mineralization is prior to soil microbial immobilization;therefore,increased mineral N supply would be most likely immobilized by soil microbes due to nutrient shortage in alpine soils.In addition,low temperature in alpine meadows might be one of the primary factors limiting soil organic matter decomposition and thus N mineralization.A laboratory incubation experiment was performed using an alpine meadow soil from the Tibetan Plateau.Two levels of NH4NO3(N) or glucose(C) were added,with a blank without addition of C or N as the control,before incubation at 5,15,or 25 ℃ for 28 d.CO2 efflux was measured during the 28-d incubation,and the mineral N was measured at the beginning and end of the incubation,in order to test two hypotheses:1) net N mineralization is negatively correlated with CO2 efflux for the control and 2) the external labile N or C supply will shift the negative correlation to positive.The results showed a negative correlation between CO2 efflux and net N immobilization in the control.External inorganic N supply did not change the negative correlation.The external labile C supply shifted the linear correlation from negative to positive under the low C addition level.However,under the high C level,no correlation was found.These suggested that the correlation of CO2 efflux to net N mineralization strongly depend on soil labile C and C:N ratio regardless of temperatures.Further research should focus on the effects of the types and the amount of litter components on interactions of C and N during soil organic matter decomposition.