A new process for vanadium recovery from stone coal by roasting-flotation was investigated based on the mineralogy. The process comprised four key steps: decarburization, preferential grinding, desliming and flotatio...A new process for vanadium recovery from stone coal by roasting-flotation was investigated based on the mineralogy. The process comprised four key steps: decarburization, preferential grinding, desliming and flotation. In the decarburization stage, roasting at 550 ℃ effectively avoided the negative effect of the carbonaceous materials in raw ore and generation of free CaO from calcite decomposition during roasting. Through preferential grinding, the high acid-consuming minerals were enriched in the middle fractions, while mica was enriched in the fine and coarse fractions. Through flotation, the final concentrate can be obtained with V2O5 grade of 1.07% and recovery of 83.30%. Moreover, the vanadium leaching rate of the final concentrate increased 13.53% compared to that of the feed. The results reveal that the decarburization by roasting at 550 ℃ is feasible and has little negative impact on mica flotation, and vanadium recovery from stone coal is conducive to reducing handling quantity, acid consumption and production cost.展开更多
Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotatio...Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotation behaviors of kaolinite, pyrophyllite and illite. It was found that three silicate minerals all exhibited good floatability with Gemini cationic surfactants as collectors over a wide pH range, while BDDA showed a stronger collecting power than EDDA. FTIR spectra and zeta potential analysis indicated that the mechanism of adsorption of Gemini collector molecules on three silicate minerals surfaces was almost identical for the electronic attraction and hydrogen bonds effect. The theoretically obtained results of density functional theory (DFT) at B3LYP/6-31G (d) level demonstrated the stronger collecting power of BDDA presented in the floatation test and zeta potential measurement.展开更多
The performance of hydroxamic polyacrylamide(HPAM) in mineral flotation was tested on the samples of calcite, diaspore and pyrite. It is found that HPAM expresses intensive depression on pyrite and can be used as effe...The performance of hydroxamic polyacrylamide(HPAM) in mineral flotation was tested on the samples of calcite, diaspore and pyrite. It is found that HPAM expresses intensive depression on pyrite and can be used as effective depressants for pyrite. The depression mechanism of HPAM to pyrite was investigated by the determination of contact angle, zeta potential, adsorptive capacity for collectors and infrared spectrum. A lower contact angle, more negative zeta potential, less xanthate adsorptive capacity, and the formation of chemical bonding were determined, which reveals that the strong chemical interactions exist between HPAM and pyrite surface. The group electronegativity of HPAM was calculated to explain the differences of interaction between reagent and minerals.展开更多
The degradation behavior of ethyl xanthate(EX) salt was the most widely used collector in sulfide mineral flotation and emission of flotation tailings with residual EX was harmful to environment. In this work, hydroge...The degradation behavior of ethyl xanthate(EX) salt was the most widely used collector in sulfide mineral flotation and emission of flotation tailings with residual EX was harmful to environment. In this work, hydrogen peroxide(H2O2) was investigated by UV-visible spectroscopy(UV/Vis) at different p H values from 3 to 12. For p H value from 5 to 12, EX was oxidized into ethyl per xanthate(EPX) by H2O2. Then EPX was further oxidized into thiosulfate(TS) salt rather than ethyl thiocarbonate(ETC) and this step was the reaction-limited step. Then depending on p H values, TS was degraded into sulphate and carbonate salts(p H>7) or elemental sulfur(p H<7). The kinetics data show that the degradation rate of EX increases with increasing the H2O2 concentration and is independent on the p H values. Without H2O2, EX is hydrolyzed to carbon disulfide fast at p H value <3.0, but the reaction of hydrolysis is undetectable at p H value >3.0 during test time.展开更多
The mechanism of sodium sulfide(Na2S)on the flotation of cyanide-depressed pyrite using potassium amyl xanthate(PAX)as collector was investigated by flotation test and electrochemical measurements.The flotation result...The mechanism of sodium sulfide(Na2S)on the flotation of cyanide-depressed pyrite using potassium amyl xanthate(PAX)as collector was investigated by flotation test and electrochemical measurements.The flotation results show that both PAX and Na2S can promote the flotation recovery of cyanide-depressed pyrite and their combination can further improve the pyrite flotation recovery.Electrochemical measurements show that PAX and Na2S interacted with cyanide-depressed pyrite through different mechanisms.PAX competed with cyanide and was adsorbed on the pyrite surface in the form of dixanthogen,thus enhancing the hydrophobicity and flotation of cyanide-depressed pyrite.Unlike PAX,Na2S rendered the pyrite surface hydrophobic through the reduction of ferricyanide species and the formation of elemental sulfur S0 and polysulfide Sn2-.The combined application of PAX and Na2S induced superior pyrite flotation recovery because of a synergistic effect between PAX and Na2S.展开更多
This paper reviews rare earth minerals(monazite and xenotime) separation by flotation. A wide range of monazite and xenotime flotation test results are summarized including: reasons of variation in the point of zero c...This paper reviews rare earth minerals(monazite and xenotime) separation by flotation. A wide range of monazite and xenotime flotation test results are summarized including: reasons of variation in the point of zero charges on these minerals, the effects of various flotation conditions on zeta potential of monazite and xenotime, interactions of collectors and depressants on the surface of these minerals during flotation separation, relationship between surface chemistry of the minerals and different types of collector adsorptions and effects of the conditioning temperature on flotation of rare earth minerals. This review collects various approaches for the selective separation of monazite and xenotime by flotation and gives perspectives for further research in the future.展开更多
In order to investigate the effect of butanol on quartz flotation when N-dodecyl ethylenediamine(ND)was used as collector, single mineral flotation and artificial mixed mineral(hematite and quartz were mixed at a mass...In order to investigate the effect of butanol on quartz flotation when N-dodecyl ethylenediamine(ND)was used as collector, single mineral flotation and artificial mixed mineral(hematite and quartz were mixed at a mass ratio of 3:2) separation were conducted in the laboratory. Experimental results indicated that addition of butanol could improve the collecting performance of ND on quartz and enhance the floatability of quartz. Best flotation recovery of quartz was obtained when butanol was mixed with ND at a mass ratio of 1:1. Moreover, the molecular structure of alcohols had a significant effect on mineral recovery. Best separation efficiency could be obtained when tert-butanol was added as it had the largest cross-sectional area. Zeta potential measurements indicated that alcohols could strengthen electrostatic adsorption between quartz and collector. Molecular dynamic simulations revealed that co-adsorption of alcohols along with ND had taken place on the quartz surface, and ND/tert-butyl combinations were more easily absorbed on the quartz surface.展开更多
The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of qu...The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of quaternary ammonium salts for the four minerals is in the order(from strong to weak) ofoctadecyl dimethyl benzyl ammonium chloride(ODBA), cetyl trimethyl ammonium bromide(CTAB), dodecyl trimethyl ammonium chloride(DTAC). Under the condition of alkalescence, it is possible to separate the diaspore from the silicate minerals such as kaolinite, illite and pyrophyllite using quaternary ammonium salts as collector. Isoelectric points (IEP) of diaspore, kaolinite, pyrophyllite and illite are pH=6.0, 3.4, 2.3 and 3.2, respectively. Quaternary ammonium salts can change ζ-potential of the aluminosilicate minerals obviously. The flotation mechanisms were explained by ζ-potential and Fourier transform infrared spectrum (FT-IR) measurements. The results demonstrate that only electrostatic interaction takes place between aluminosilicate minerals (diaspore, kaolinite, pyrophyllite and illite) and quaternary ammonium salts.展开更多
The composition of a collector directly affects its collecting performance in mineral flotation.In this study,three vegetable oils were used as the collectors,the flotation performance of scheelite and the differentia...The composition of a collector directly affects its collecting performance in mineral flotation.In this study,three vegetable oils were used as the collectors,the flotation performance of scheelite and the differential analysis were studied through flotation experiments,zeta potential,contact angle measurement and Fourier transform infrared spectrum(FTIR)analysis.Flotation results show that the recovery of scheelite increases in the order of oleic acid<rapeseed oil<rice bran oil<soybean oil,especially in the pH range of 5-8.The distinction in the scheelite recovery is due to the different compositions of these collectors.The addition of LA,LNA and PA(<5%)can increase the recovery of scheelite with OA,but the addition of SA deteriorates the scheelite flotation.Results of zeta potential,contact angle measurement and FTIR analysis indicate that the collector adsorption on scheelite surface is enhanced when using the three vegetable oils.For the raw ore with 0.086%WO3,a rough concentrate containing 1.423%WO3 with the recovery of 84.22%is obtained using soybean oil as the collector.展开更多
The galvanic coupling formed in origin potential flotation systems of sulfide minerals can be divided (into) three types: sulfide mineral-sulfide mineral-water system; sulfide mineral-steel ball-water system; and su...The galvanic coupling formed in origin potential flotation systems of sulfide minerals can be divided (into) three types: sulfide mineral-sulfide mineral-water system; sulfide mineral-steel ball-water system; and sulfide mineral-sulfide mineral-collector system. In this paper, taking lead, zinc, iron sulfide mineral systems for examples, several models of galvanic coupling were proposed and the effects of galvanic coupling on flotation were discussed. A galvanic contact between galena (or sphalerite) and pyrite contributes to decreasing the content of zinc in lead concentrate, and enhances remarkably the absorption of collector on the galena surface. During grinding, due to galvanic interactions between minerals and steel medium, Fe(OH)3 formed covers on the cathodic mineral surface, affecting its floatability.展开更多
In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scannin...In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scanning electron microscope-energy dispersive system (SEM-EDS) and an X-ray spectrometer the mineral category and content of samples were analyzed. By using a mineral liberation analyzer (MLA) the mineral liberation characteristics were revealed. It is shown that in roughing feed the monomers liberation degree of nickel pyrite and chalcopyrite take up 84.11% and 88.82%, respectively. In tailings, the lost nickel pyrite and chalcopyrite are mainly monomers. Therefore, strengthening the micro-fine particle recovery capacity is the key to increase recovery.展开更多
Co-grinding three nonferrous metal oxides(CuO,PbO and ZnO)with element sulphur under mild conditions and flotation of the ground samples were conducted to investigate the surface properties and floatability of the oxi...Co-grinding three nonferrous metal oxides(CuO,PbO and ZnO)with element sulphur under mild conditions and flotation of the ground samples were conducted to investigate the surface properties and floatability of the oxides.Phase transition,morphological features,electrochemical properties and surface chemical compositions of ground samples were studied.The results show that the floatability of CuO is improved after grinding with sulfur,by the formation of surface layer with properties similar to CuS due to the Cu-S bonding.The floatability of PbO is deteriorated after mechanochemical processing due to surface carbonation and the formation of PbS and PbSO4by disproportionation reaction with sulfur.ZnO shows no evident response to mechanochemical sulfidation.展开更多
Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated.To evaluate the performance of a frother,an apparatus to measure the bubble size is a basic necessity.McGill ...Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated.To evaluate the performance of a frother,an apparatus to measure the bubble size is a basic necessity.McGill Bubble Size Analyzer(MBSA) or bubble viewer that has been developed and completed by McGill University's Mineral Processing Group during the last decade is a unique instrument to serve this purpose.Two parameters which are thought to influence the bubble size measurements by McGill bubble viewer include water quality and frother concentration in the chamber.Results show that there is no difference in Sauter mean(D32) when tap or de-ionized water was used instead of process water.However,the frother concentration,in this research DowFroth 250(DF250),inside the chamber exhibited a pronounced effect on bubble size.Frother concentration below a certain point can not prevent coalescence inside the chamber and therefore caution must be taken in plant applications.It was also noted that the frother concentration which has been so far practiced in plant measurements(CCC75-CCC95) is high enough to prevent coalescence with the bubble viewer.展开更多
Pilot scale column flotation studies were conducted on a low grade siliceous limestone ore. Silica content was reduced to less than 13g in the concentrate so that it became satisfactory for use in the paper or rubber ...Pilot scale column flotation studies were conducted on a low grade siliceous limestone ore. Silica content was reduced to less than 13g in the concentrate so that it became satisfactory for use in the paper or rubber industries. The limestone sample was crystalline and constituted primarily of calcite that contained quartz, feldspar, pyroxene, and biotite as gangue minerals. Quartz is the major silicate gangue whereas feldspar, pyroxene, and biotite exist in minor to trace quantities. Traces of pyrite were also observed within the sample. A reverse flotation process was adopted where the silicate gangue minerals were floated using two different commercial cationic collectors: Chem-750 F or Floatamine-D. The studies clearly suggest it is possible to produce a limestone concentrate assaying around 96-97% CaCO3 containing less than 1 % Si02. The effect of feed flow rate, percent solids, froth depth, and wash water on the grade and recovery of the CaC03 concentrate is discussed.展开更多
On the basis of the mineralizing mechanism of froth cyclone, this paper expounds that the froth cyclone flotation process is accomplished in a limited centrifugal field. The main feature of air bubble mineralizing in ...On the basis of the mineralizing mechanism of froth cyclone, this paper expounds that the froth cyclone flotation process is accomplished in a limited centrifugal field. The main feature of air bubble mineralizing in the froth cyclone is a synthetic mineralizing process, of which the non collision mineralization of minute air bubble separated out dominates, supplemented with the collision mineralization. Moreover, this paper points out that the hydrophobic separated out and centrifugal force strengthen the selectivity of fine coal particle, accelerate the flotation speed and improve the slime recovery.展开更多
基金Project(2015BAB03B05)supported by the National Key Technology R&D Program during the"12th Five-year Plan"Period,ChinaProject(51404177)supported by the National Natural Science Foundation of China
文摘A new process for vanadium recovery from stone coal by roasting-flotation was investigated based on the mineralogy. The process comprised four key steps: decarburization, preferential grinding, desliming and flotation. In the decarburization stage, roasting at 550 ℃ effectively avoided the negative effect of the carbonaceous materials in raw ore and generation of free CaO from calcite decomposition during roasting. Through preferential grinding, the high acid-consuming minerals were enriched in the middle fractions, while mica was enriched in the fine and coarse fractions. Through flotation, the final concentrate can be obtained with V2O5 grade of 1.07% and recovery of 83.30%. Moreover, the vanadium leaching rate of the final concentrate increased 13.53% compared to that of the feed. The results reveal that the decarburization by roasting at 550 ℃ is feasible and has little negative impact on mica flotation, and vanadium recovery from stone coal is conducive to reducing handling quantity, acid consumption and production cost.
基金Project(2013AA064102)supported by the High-tech Research and Development Program of ChinaProject(51004114)supported by the National Natural Science Foundation of China+1 种基金Project(2007B52)supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(NCEP-08-0568)supported by the Program for New Century Excellent Talents in Chinese University
文摘Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotation behaviors of kaolinite, pyrophyllite and illite. It was found that three silicate minerals all exhibited good floatability with Gemini cationic surfactants as collectors over a wide pH range, while BDDA showed a stronger collecting power than EDDA. FTIR spectra and zeta potential analysis indicated that the mechanism of adsorption of Gemini collector molecules on three silicate minerals surfaces was almost identical for the electronic attraction and hydrogen bonds effect. The theoretically obtained results of density functional theory (DFT) at B3LYP/6-31G (d) level demonstrated the stronger collecting power of BDDA presented in the floatation test and zeta potential measurement.
文摘The performance of hydroxamic polyacrylamide(HPAM) in mineral flotation was tested on the samples of calcite, diaspore and pyrite. It is found that HPAM expresses intensive depression on pyrite and can be used as effective depressants for pyrite. The depression mechanism of HPAM to pyrite was investigated by the determination of contact angle, zeta potential, adsorptive capacity for collectors and infrared spectrum. A lower contact angle, more negative zeta potential, less xanthate adsorptive capacity, and the formation of chemical bonding were determined, which reveals that the strong chemical interactions exist between HPAM and pyrite surface. The group electronegativity of HPAM was calculated to explain the differences of interaction between reagent and minerals.
基金Project(2013AA064102)supported by the National High Technology Research and Development Program of ChinaProject(B14034)supported by the Program of Introducing Talents of Discipline to Universities,ChinaProject supported by the 2011 Collaborative Innovation Center for Clean and Efficient utilization of Strategic Metal Mineral Resources,China
文摘The degradation behavior of ethyl xanthate(EX) salt was the most widely used collector in sulfide mineral flotation and emission of flotation tailings with residual EX was harmful to environment. In this work, hydrogen peroxide(H2O2) was investigated by UV-visible spectroscopy(UV/Vis) at different p H values from 3 to 12. For p H value from 5 to 12, EX was oxidized into ethyl per xanthate(EPX) by H2O2. Then EPX was further oxidized into thiosulfate(TS) salt rather than ethyl thiocarbonate(ETC) and this step was the reaction-limited step. Then depending on p H values, TS was degraded into sulphate and carbonate salts(p H>7) or elemental sulfur(p H<7). The kinetics data show that the degradation rate of EX increases with increasing the H2O2 concentration and is independent on the p H values. Without H2O2, EX is hydrolyzed to carbon disulfide fast at p H value <3.0, but the reaction of hydrolysis is undetectable at p H value >3.0 during test time.
基金Project(51764045)supported by the National Natural Science Foundation of ChinaProject(NJYT-18-B08)supported by Inner Mongolia Young Science&Technology Talent Support Plan,China+1 种基金Project(GK-201804)supported by Research Fund Program of State Key Laboratory of Rare Metals Separation and Comprehensive Utilization,ChinaProject(DD20190574)supported by China Geological Survey Project
文摘The mechanism of sodium sulfide(Na2S)on the flotation of cyanide-depressed pyrite using potassium amyl xanthate(PAX)as collector was investigated by flotation test and electrochemical measurements.The flotation results show that both PAX and Na2S can promote the flotation recovery of cyanide-depressed pyrite and their combination can further improve the pyrite flotation recovery.Electrochemical measurements show that PAX and Na2S interacted with cyanide-depressed pyrite through different mechanisms.PAX competed with cyanide and was adsorbed on the pyrite surface in the form of dixanthogen,thus enhancing the hydrophobicity and flotation of cyanide-depressed pyrite.Unlike PAX,Na2S rendered the pyrite surface hydrophobic through the reduction of ferricyanide species and the formation of elemental sulfur S0 and polysulfide Sn2-.The combined application of PAX and Na2S induced superior pyrite flotation recovery because of a synergistic effect between PAX and Na2S.
文摘This paper reviews rare earth minerals(monazite and xenotime) separation by flotation. A wide range of monazite and xenotime flotation test results are summarized including: reasons of variation in the point of zero charges on these minerals, the effects of various flotation conditions on zeta potential of monazite and xenotime, interactions of collectors and depressants on the surface of these minerals during flotation separation, relationship between surface chemistry of the minerals and different types of collector adsorptions and effects of the conditioning temperature on flotation of rare earth minerals. This review collects various approaches for the selective separation of monazite and xenotime by flotation and gives perspectives for further research in the future.
基金financial support of the National Natural Science Foundation of China (No.51374051)the Fundamental Research Fund for the Central Universities (No.N130401008)
文摘In order to investigate the effect of butanol on quartz flotation when N-dodecyl ethylenediamine(ND)was used as collector, single mineral flotation and artificial mixed mineral(hematite and quartz were mixed at a mass ratio of 3:2) separation were conducted in the laboratory. Experimental results indicated that addition of butanol could improve the collecting performance of ND on quartz and enhance the floatability of quartz. Best flotation recovery of quartz was obtained when butanol was mixed with ND at a mass ratio of 1:1. Moreover, the molecular structure of alcohols had a significant effect on mineral recovery. Best separation efficiency could be obtained when tert-butanol was added as it had the largest cross-sectional area. Zeta potential measurements indicated that alcohols could strengthen electrostatic adsorption between quartz and collector. Molecular dynamic simulations revealed that co-adsorption of alcohols along with ND had taken place on the quartz surface, and ND/tert-butyl combinations were more easily absorbed on the quartz surface.
基金Project(2005CB623701) supported by the National Key Fundamental Research and Development Program of China
文摘The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of quaternary ammonium salts for the four minerals is in the order(from strong to weak) ofoctadecyl dimethyl benzyl ammonium chloride(ODBA), cetyl trimethyl ammonium bromide(CTAB), dodecyl trimethyl ammonium chloride(DTAC). Under the condition of alkalescence, it is possible to separate the diaspore from the silicate minerals such as kaolinite, illite and pyrophyllite using quaternary ammonium salts as collector. Isoelectric points (IEP) of diaspore, kaolinite, pyrophyllite and illite are pH=6.0, 3.4, 2.3 and 3.2, respectively. Quaternary ammonium salts can change ζ-potential of the aluminosilicate minerals obviously. The flotation mechanisms were explained by ζ-potential and Fourier transform infrared spectrum (FT-IR) measurements. The results demonstrate that only electrostatic interaction takes place between aluminosilicate minerals (diaspore, kaolinite, pyrophyllite and illite) and quaternary ammonium salts.
基金Project(2016RS2016) supported by Provincial Science and Technology Leader Program,Hunan,ChinaProject(2017zzts807) supported by Postgraduate Innovative Research Projects of Central South University,China
文摘The composition of a collector directly affects its collecting performance in mineral flotation.In this study,three vegetable oils were used as the collectors,the flotation performance of scheelite and the differential analysis were studied through flotation experiments,zeta potential,contact angle measurement and Fourier transform infrared spectrum(FTIR)analysis.Flotation results show that the recovery of scheelite increases in the order of oleic acid<rapeseed oil<rice bran oil<soybean oil,especially in the pH range of 5-8.The distinction in the scheelite recovery is due to the different compositions of these collectors.The addition of LA,LNA and PA(<5%)can increase the recovery of scheelite with OA,but the addition of SA deteriorates the scheelite flotation.Results of zeta potential,contact angle measurement and FTIR analysis indicate that the collector adsorption on scheelite surface is enhanced when using the three vegetable oils.For the raw ore with 0.086%WO3,a rough concentrate containing 1.423%WO3 with the recovery of 84.22%is obtained using soybean oil as the collector.
文摘The galvanic coupling formed in origin potential flotation systems of sulfide minerals can be divided (into) three types: sulfide mineral-sulfide mineral-water system; sulfide mineral-steel ball-water system; and sulfide mineral-sulfide mineral-collector system. In this paper, taking lead, zinc, iron sulfide mineral systems for examples, several models of galvanic coupling were proposed and the effects of galvanic coupling on flotation were discussed. A galvanic contact between galena (or sphalerite) and pyrite contributes to decreasing the content of zinc in lead concentrate, and enhances remarkably the absorption of collector on the galena surface. During grinding, due to galvanic interactions between minerals and steel medium, Fe(OH)3 formed covers on the cathodic mineral surface, affecting its floatability.
基金Projects 2008BAB31B01 supported by the National Key Technology R&D Program in the 11th Five-Year Plan of China50834006 by the National Natural Science Foundation of China
文摘In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scanning electron microscope-energy dispersive system (SEM-EDS) and an X-ray spectrometer the mineral category and content of samples were analyzed. By using a mineral liberation analyzer (MLA) the mineral liberation characteristics were revealed. It is shown that in roughing feed the monomers liberation degree of nickel pyrite and chalcopyrite take up 84.11% and 88.82%, respectively. In tailings, the lost nickel pyrite and chalcopyrite are mainly monomers. Therefore, strengthening the micro-fine particle recovery capacity is the key to increase recovery.
文摘Co-grinding three nonferrous metal oxides(CuO,PbO and ZnO)with element sulphur under mild conditions and flotation of the ground samples were conducted to investigate the surface properties and floatability of the oxides.Phase transition,morphological features,electrochemical properties and surface chemical compositions of ground samples were studied.The results show that the floatability of CuO is improved after grinding with sulfur,by the formation of surface layer with properties similar to CuS due to the Cu-S bonding.The floatability of PbO is deteriorated after mechanochemical processing due to surface carbonation and the formation of PbS and PbSO4by disproportionation reaction with sulfur.ZnO shows no evident response to mechanochemical sulfidation.
基金Project supported by the Chair in Mineral Processing at McGill University,under the Collaborative Research and Development Program of NSERC(Natural Sciences and Engineering Research Council of Canada)with industrial sponsorship from Vale,Teck Cominco,Xstrata Process Support,Agnico-Eagle,Shell Canada,Barrick Gold,COREM,SGS Lakefield Research and Flottec
文摘Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated.To evaluate the performance of a frother,an apparatus to measure the bubble size is a basic necessity.McGill Bubble Size Analyzer(MBSA) or bubble viewer that has been developed and completed by McGill University's Mineral Processing Group during the last decade is a unique instrument to serve this purpose.Two parameters which are thought to influence the bubble size measurements by McGill bubble viewer include water quality and frother concentration in the chamber.Results show that there is no difference in Sauter mean(D32) when tap or de-ionized water was used instead of process water.However,the frother concentration,in this research DowFroth 250(DF250),inside the chamber exhibited a pronounced effect on bubble size.Frother concentration below a certain point can not prevent coalescence inside the chamber and therefore caution must be taken in plant applications.It was also noted that the frother concentration which has been so far practiced in plant measurements(CCC75-CCC95) is high enough to prevent coalescence with the bubble viewer.
文摘Pilot scale column flotation studies were conducted on a low grade siliceous limestone ore. Silica content was reduced to less than 13g in the concentrate so that it became satisfactory for use in the paper or rubber industries. The limestone sample was crystalline and constituted primarily of calcite that contained quartz, feldspar, pyroxene, and biotite as gangue minerals. Quartz is the major silicate gangue whereas feldspar, pyroxene, and biotite exist in minor to trace quantities. Traces of pyrite were also observed within the sample. A reverse flotation process was adopted where the silicate gangue minerals were floated using two different commercial cationic collectors: Chem-750 F or Floatamine-D. The studies clearly suggest it is possible to produce a limestone concentrate assaying around 96-97% CaCO3 containing less than 1 % Si02. The effect of feed flow rate, percent solids, froth depth, and wash water on the grade and recovery of the CaC03 concentrate is discussed.
文摘On the basis of the mineralizing mechanism of froth cyclone, this paper expounds that the froth cyclone flotation process is accomplished in a limited centrifugal field. The main feature of air bubble mineralizing in the froth cyclone is a synthetic mineralizing process, of which the non collision mineralization of minute air bubble separated out dominates, supplemented with the collision mineralization. Moreover, this paper points out that the hydrophobic separated out and centrifugal force strengthen the selectivity of fine coal particle, accelerate the flotation speed and improve the slime recovery.